Apolipoprotein A-I attenuates palmitate-mediated NF-κB activation by reducing Toll-like receptor-4 recruitment into lipid rafts.

While high-density lipoprotein (HDL) is known to protect against a wide range of inflammatory stimuli, its anti-inflammatory mechanisms are not well understood. Furthermore, HDL's protective effects against saturated dietary fats have not been previously described. In this study, we used endoth...

Full description

Bibliographic Details
Main Authors: Andrew M Cheng, Priya Handa, Sanshiro Tateya, Jay Schwartz, Chongren Tang, Poulami Mitra, John F Oram, Alan Chait, Francis Kim
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3316516?pdf=render
Description
Summary:While high-density lipoprotein (HDL) is known to protect against a wide range of inflammatory stimuli, its anti-inflammatory mechanisms are not well understood. Furthermore, HDL's protective effects against saturated dietary fats have not been previously described. In this study, we used endothelial cells to demonstrate that while palmitic acid activates NF-κB signaling, apolipoprotein A-I, (apoA-I), the major protein component of HDL, attenuates palmitate-induced NF-κB activation. Further, vascular NF-κB signaling (IL-6, MCP-1, TNF-α) and macrophage markers (CD68, CD11c) induced by 24 weeks of a diabetogenic diet containing cholesterol (DDC) is reduced in human apoA-I overexpressing transgenic C57BL/6 mice compared to age-matched WT controls. Moreover, WT mice on DDC compared to a chow diet display increased gene expression of lipid raft markers such as Caveolin-1 and Flotillin-1, and inflammatory Toll-like receptors (TLRs) (TLR2, TLR4) in the vasculature. However apoA-I transgenic mice on DDC show markedly reduced expression of these genes. Finally, we show that in endothelial cells TLR4 is recruited into lipid rafts in response to palmitate, and that apoA-I prevents palmitate-induced TLR4 trafficking into lipid rafts, thereby blocking NF-κB activation. Thus, apoA-I overexpression might be a useful therapeutic tool against vascular inflammation.
ISSN:1932-6203