Identification of SNPs and INDELS in swine transcribed sequences using short oligonucleotide microarrays
<p>Abstract</p> <p>Background</p> <p>Genome-wide detection of single feature polymorphisms (SFP) in swine using transcriptome profiling of day 25 placental RNA by contrasting probe intensities from either Meishan or an occidental composite breed with Affymetrix porcine...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2008-05-01
|
Series: | BMC Genomics |
Online Access: | http://www.biomedcentral.com/1471-2164/9/252 |
id |
doaj-e09dc83b40e347e4b32d96c39eda09d9 |
---|---|
record_format |
Article |
spelling |
doaj-e09dc83b40e347e4b32d96c39eda09d92020-11-25T00:19:54ZengBMCBMC Genomics1471-21642008-05-019125210.1186/1471-2164-9-252Identification of SNPs and INDELS in swine transcribed sequences using short oligonucleotide microarraysYork Abby MHardison Nicholas ETsai ShengdarBischoff Steve RFreking Brad ANonneman DanRohrer GaryPiedrahita Jorge A<p>Abstract</p> <p>Background</p> <p>Genome-wide detection of single feature polymorphisms (SFP) in swine using transcriptome profiling of day 25 placental RNA by contrasting probe intensities from either Meishan or an occidental composite breed with Affymetrix porcine microarrays is presented. A linear mixed model analysis was used to identify significant breed-by-probe interactions.</p> <p>Results</p> <p>Gene specific linear mixed models were fit to each of the log<sub>2 </sub>transformed probe intensities on these arrays, using fixed effects for breed, probe, breed-by-probe interaction, and a random effect for array. After surveying the day 25 placental transcriptome, 857 probes with a q-value ≤ 0.05 and |fold change| ≥ 2 for the breed-by-probe interaction were identified as candidates containing SFP. To address the quality of the bioinformatics approach, universal pyrosequencing assays were designed from Affymetrix exemplar sequences to independently assess polymorphisms within a subset of probes for validation. Additionally probes were randomly selected for sequencing to determine an unbiased confirmation rate. In most cases, the 25-mer probe sequence printed on the microarray diverged from Meishan, not occidental crosses. This analysis was used to define a set of highly reliable predicted SFPs according to their probability scores.</p> <p>Conclusion</p> <p>By applying a SFP detection method to two mammalian breeds for the first time, we detected transition and transversion single nucleotide polymorphisms, as well as insertions/deletions which can be used to rapidly develop markers for genetic mapping and association analysis in species where high density genotyping platforms are otherwise unavailable.</p> <p>SNPs and INDELS discovered by this approach have been publicly deposited in NCBI's SNP repository dbSNP. This method is an attractive bioinformatics tool for uncovering breed-by-probe interactions, for rapidly identifying expressed SNPs, for investigating potential functional correlations between gene expression and breed polymorphisms, and is robust enough to be used on any Affymetrix gene expression platform.</p> http://www.biomedcentral.com/1471-2164/9/252 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
York Abby M Hardison Nicholas E Tsai Shengdar Bischoff Steve R Freking Brad A Nonneman Dan Rohrer Gary Piedrahita Jorge A |
spellingShingle |
York Abby M Hardison Nicholas E Tsai Shengdar Bischoff Steve R Freking Brad A Nonneman Dan Rohrer Gary Piedrahita Jorge A Identification of SNPs and INDELS in swine transcribed sequences using short oligonucleotide microarrays BMC Genomics |
author_facet |
York Abby M Hardison Nicholas E Tsai Shengdar Bischoff Steve R Freking Brad A Nonneman Dan Rohrer Gary Piedrahita Jorge A |
author_sort |
York Abby M |
title |
Identification of SNPs and INDELS in swine transcribed sequences using short oligonucleotide microarrays |
title_short |
Identification of SNPs and INDELS in swine transcribed sequences using short oligonucleotide microarrays |
title_full |
Identification of SNPs and INDELS in swine transcribed sequences using short oligonucleotide microarrays |
title_fullStr |
Identification of SNPs and INDELS in swine transcribed sequences using short oligonucleotide microarrays |
title_full_unstemmed |
Identification of SNPs and INDELS in swine transcribed sequences using short oligonucleotide microarrays |
title_sort |
identification of snps and indels in swine transcribed sequences using short oligonucleotide microarrays |
publisher |
BMC |
series |
BMC Genomics |
issn |
1471-2164 |
publishDate |
2008-05-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Genome-wide detection of single feature polymorphisms (SFP) in swine using transcriptome profiling of day 25 placental RNA by contrasting probe intensities from either Meishan or an occidental composite breed with Affymetrix porcine microarrays is presented. A linear mixed model analysis was used to identify significant breed-by-probe interactions.</p> <p>Results</p> <p>Gene specific linear mixed models were fit to each of the log<sub>2 </sub>transformed probe intensities on these arrays, using fixed effects for breed, probe, breed-by-probe interaction, and a random effect for array. After surveying the day 25 placental transcriptome, 857 probes with a q-value ≤ 0.05 and |fold change| ≥ 2 for the breed-by-probe interaction were identified as candidates containing SFP. To address the quality of the bioinformatics approach, universal pyrosequencing assays were designed from Affymetrix exemplar sequences to independently assess polymorphisms within a subset of probes for validation. Additionally probes were randomly selected for sequencing to determine an unbiased confirmation rate. In most cases, the 25-mer probe sequence printed on the microarray diverged from Meishan, not occidental crosses. This analysis was used to define a set of highly reliable predicted SFPs according to their probability scores.</p> <p>Conclusion</p> <p>By applying a SFP detection method to two mammalian breeds for the first time, we detected transition and transversion single nucleotide polymorphisms, as well as insertions/deletions which can be used to rapidly develop markers for genetic mapping and association analysis in species where high density genotyping platforms are otherwise unavailable.</p> <p>SNPs and INDELS discovered by this approach have been publicly deposited in NCBI's SNP repository dbSNP. This method is an attractive bioinformatics tool for uncovering breed-by-probe interactions, for rapidly identifying expressed SNPs, for investigating potential functional correlations between gene expression and breed polymorphisms, and is robust enough to be used on any Affymetrix gene expression platform.</p> |
url |
http://www.biomedcentral.com/1471-2164/9/252 |
work_keys_str_mv |
AT yorkabbym identificationofsnpsandindelsinswinetranscribedsequencesusingshortoligonucleotidemicroarrays AT hardisonnicholase identificationofsnpsandindelsinswinetranscribedsequencesusingshortoligonucleotidemicroarrays AT tsaishengdar identificationofsnpsandindelsinswinetranscribedsequencesusingshortoligonucleotidemicroarrays AT bischoffstever identificationofsnpsandindelsinswinetranscribedsequencesusingshortoligonucleotidemicroarrays AT frekingbrada identificationofsnpsandindelsinswinetranscribedsequencesusingshortoligonucleotidemicroarrays AT nonnemandan identificationofsnpsandindelsinswinetranscribedsequencesusingshortoligonucleotidemicroarrays AT rohrergary identificationofsnpsandindelsinswinetranscribedsequencesusingshortoligonucleotidemicroarrays AT piedrahitajorgea identificationofsnpsandindelsinswinetranscribedsequencesusingshortoligonucleotidemicroarrays |
_version_ |
1725369855423545344 |