Summary: | The paper covers matters arising in building mathematical model of processes at thermal treatment of construction materials. On the basis of analysis of heat energy and moisture flows in intermittent steam chamber and continuous tunnel drying chamber, analytic and structure models of heat-mass-exchange processes in processing vessels are drawn. The structural model of heat-mass-exchange processes allowed to evaluate the relationship of heat energy and moisture flows at heat treatment processes for gypsum and reinforced-concrete articles. The resulting system of interrelated differential equations is based on a structural model. Analytical studies showed that the considering heat treatment units are characterized by non-stationary, non-linear, stochastic and distributed technological parameters. An experimental study of technological devices has shown that in a limited time range, the processes of heat-mass-exchange can be characterized by a system of linear differential equations with constant coefficients with sufficient accuracy for practice. Acceptable allowances and simplifying assumptions at analytical description of heat-mass-exchange processes in processing vessels are considered. As a result of performed research, various mathematical forms (differential equation system, matrix and operator forms) of mathematical models of processing vessels are obtained. The built mathematical models may be applied for constructing the processing vessels with preset dynamic properties, as well for control-system designing by those vessels.
|