Dynamic TMT-Based Quantitative Proteomics Analysis of Critical Initiation Process of Totipotency during Cotton Somatic Embryogenesis Transdifferentiation

The somatic embryogenesis (SE) process of plants, as one of the typical responses to abiotic stresses with hormone, occurs through the dynamic expression of different proteins that constitute a complex regulatory network in biological activities and promotes plant totipotency. Plant SE includes two...

Full description

Bibliographic Details
Main Authors: Haixia Guo, Huihui Guo, Li Zhang, Yijie Fan, Yupeng Fan, Zhengmin Tang, Fanchang Zeng
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/20/7/1691
id doaj-e0952159a6f243faa2736dbabe50aa8f
record_format Article
spelling doaj-e0952159a6f243faa2736dbabe50aa8f2020-11-25T01:14:54ZengMDPI AGInternational Journal of Molecular Sciences1422-00672019-04-01207169110.3390/ijms20071691ijms20071691Dynamic TMT-Based Quantitative Proteomics Analysis of Critical Initiation Process of Totipotency during Cotton Somatic Embryogenesis TransdifferentiationHaixia Guo0Huihui Guo1Li Zhang2Yijie Fan3Yupeng Fan4Zhengmin Tang5Fanchang Zeng6State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, ChinaState Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, ChinaState Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, ChinaState Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, ChinaState Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, ChinaState Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, ChinaState Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, ChinaThe somatic embryogenesis (SE) process of plants, as one of the typical responses to abiotic stresses with hormone, occurs through the dynamic expression of different proteins that constitute a complex regulatory network in biological activities and promotes plant totipotency. Plant SE includes two critical stages: primary embryogenic calli redifferentiation and somatic embryos development initiation, which leads to totipotency. The isobaric labels tandem mass tags (TMT) large-scale and quantitative proteomics technique was used to identify the dynamic protein expression changes in nonembryogenic calli (NEC), primary embryogenic calli (PEC) and globular embryos (GEs) of cotton. A total of 9369 proteins (6730 quantified) were identified; 805, 295 and 1242 differentially accumulated proteins (DAPs) were identified in PEC versus NEC, GEs versus PEC and GEs versus NEC, respectively. Eight hundred and five differentially abundant proteins were identified, 309 of which were upregulated and 496 down regulated in PEC compared with NEC. Of the 295 DAPs identified between GEs and PEC, 174 and 121 proteins were up- and down regulated, respectively. Of 1242 differentially abundant proteins, 584 and 658 proteins were up- and down regulated, respectively, in GEs versus NEC. We have also complemented the authenticity and accuracy of the proteomic analysis. Systematic analysis indicated that peroxidase, photosynthesis, environment stresses response processes, nitrogen metabolism, phytohormone response/signal transduction, transcription/posttranscription and modification were involved in somatic embryogenesis. The results generated in this study demonstrate a proteomic molecular basis and provide a valuable foundation for further investigation of the roles of DAPs in the process of SE transdifferentiation during cotton totipotency.https://www.mdpi.com/1422-0067/20/7/1691cottonsomatic embryogenesistransdifferentiationquantitative proteomicsregulation and metabolismmolecular basisconcerted network
collection DOAJ
language English
format Article
sources DOAJ
author Haixia Guo
Huihui Guo
Li Zhang
Yijie Fan
Yupeng Fan
Zhengmin Tang
Fanchang Zeng
spellingShingle Haixia Guo
Huihui Guo
Li Zhang
Yijie Fan
Yupeng Fan
Zhengmin Tang
Fanchang Zeng
Dynamic TMT-Based Quantitative Proteomics Analysis of Critical Initiation Process of Totipotency during Cotton Somatic Embryogenesis Transdifferentiation
International Journal of Molecular Sciences
cotton
somatic embryogenesis
transdifferentiation
quantitative proteomics
regulation and metabolism
molecular basis
concerted network
author_facet Haixia Guo
Huihui Guo
Li Zhang
Yijie Fan
Yupeng Fan
Zhengmin Tang
Fanchang Zeng
author_sort Haixia Guo
title Dynamic TMT-Based Quantitative Proteomics Analysis of Critical Initiation Process of Totipotency during Cotton Somatic Embryogenesis Transdifferentiation
title_short Dynamic TMT-Based Quantitative Proteomics Analysis of Critical Initiation Process of Totipotency during Cotton Somatic Embryogenesis Transdifferentiation
title_full Dynamic TMT-Based Quantitative Proteomics Analysis of Critical Initiation Process of Totipotency during Cotton Somatic Embryogenesis Transdifferentiation
title_fullStr Dynamic TMT-Based Quantitative Proteomics Analysis of Critical Initiation Process of Totipotency during Cotton Somatic Embryogenesis Transdifferentiation
title_full_unstemmed Dynamic TMT-Based Quantitative Proteomics Analysis of Critical Initiation Process of Totipotency during Cotton Somatic Embryogenesis Transdifferentiation
title_sort dynamic tmt-based quantitative proteomics analysis of critical initiation process of totipotency during cotton somatic embryogenesis transdifferentiation
publisher MDPI AG
series International Journal of Molecular Sciences
issn 1422-0067
publishDate 2019-04-01
description The somatic embryogenesis (SE) process of plants, as one of the typical responses to abiotic stresses with hormone, occurs through the dynamic expression of different proteins that constitute a complex regulatory network in biological activities and promotes plant totipotency. Plant SE includes two critical stages: primary embryogenic calli redifferentiation and somatic embryos development initiation, which leads to totipotency. The isobaric labels tandem mass tags (TMT) large-scale and quantitative proteomics technique was used to identify the dynamic protein expression changes in nonembryogenic calli (NEC), primary embryogenic calli (PEC) and globular embryos (GEs) of cotton. A total of 9369 proteins (6730 quantified) were identified; 805, 295 and 1242 differentially accumulated proteins (DAPs) were identified in PEC versus NEC, GEs versus PEC and GEs versus NEC, respectively. Eight hundred and five differentially abundant proteins were identified, 309 of which were upregulated and 496 down regulated in PEC compared with NEC. Of the 295 DAPs identified between GEs and PEC, 174 and 121 proteins were up- and down regulated, respectively. Of 1242 differentially abundant proteins, 584 and 658 proteins were up- and down regulated, respectively, in GEs versus NEC. We have also complemented the authenticity and accuracy of the proteomic analysis. Systematic analysis indicated that peroxidase, photosynthesis, environment stresses response processes, nitrogen metabolism, phytohormone response/signal transduction, transcription/posttranscription and modification were involved in somatic embryogenesis. The results generated in this study demonstrate a proteomic molecular basis and provide a valuable foundation for further investigation of the roles of DAPs in the process of SE transdifferentiation during cotton totipotency.
topic cotton
somatic embryogenesis
transdifferentiation
quantitative proteomics
regulation and metabolism
molecular basis
concerted network
url https://www.mdpi.com/1422-0067/20/7/1691
work_keys_str_mv AT haixiaguo dynamictmtbasedquantitativeproteomicsanalysisofcriticalinitiationprocessoftotipotencyduringcottonsomaticembryogenesistransdifferentiation
AT huihuiguo dynamictmtbasedquantitativeproteomicsanalysisofcriticalinitiationprocessoftotipotencyduringcottonsomaticembryogenesistransdifferentiation
AT lizhang dynamictmtbasedquantitativeproteomicsanalysisofcriticalinitiationprocessoftotipotencyduringcottonsomaticembryogenesistransdifferentiation
AT yijiefan dynamictmtbasedquantitativeproteomicsanalysisofcriticalinitiationprocessoftotipotencyduringcottonsomaticembryogenesistransdifferentiation
AT yupengfan dynamictmtbasedquantitativeproteomicsanalysisofcriticalinitiationprocessoftotipotencyduringcottonsomaticembryogenesistransdifferentiation
AT zhengmintang dynamictmtbasedquantitativeproteomicsanalysisofcriticalinitiationprocessoftotipotencyduringcottonsomaticembryogenesistransdifferentiation
AT fanchangzeng dynamictmtbasedquantitativeproteomicsanalysisofcriticalinitiationprocessoftotipotencyduringcottonsomaticembryogenesistransdifferentiation
_version_ 1725155711635161088