A Novel Hybrid Monte Carlo Algorithm for Sampling Path Space
To sample from complex, high-dimensional distributions, one may choose algorithms based on the Hybrid Monte Carlo (HMC) method. HMC-based algorithms generate nonlocal moves alleviating diffusive behavior. Here, I build on an already defined HMC framework, hybrid Monte Carlo on Hilbert spaces (Beskos...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/23/5/499 |
id |
doaj-e093ec427c10499fa4b1c05f4d7662a7 |
---|---|
record_format |
Article |
spelling |
doaj-e093ec427c10499fa4b1c05f4d7662a72021-04-22T23:01:56ZengMDPI AGEntropy1099-43002021-04-012349949910.3390/e23050499A Novel Hybrid Monte Carlo Algorithm for Sampling Path SpaceFrancis J. Pinski0Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USATo sample from complex, high-dimensional distributions, one may choose algorithms based on the Hybrid Monte Carlo (HMC) method. HMC-based algorithms generate nonlocal moves alleviating diffusive behavior. Here, I build on an already defined HMC framework, hybrid Monte Carlo on Hilbert spaces (Beskos, et al. <i>Stoch. Proc. Applic.</i> 2011), that provides finite-dimensional approximations of measures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>, which have density with respect to a Gaussian measure on an infinite-dimensional Hilbert (path) space. In all HMC algorithms, one has some freedom to choose the mass operator. The novel feature of the algorithm described in this article lies in the choice of this operator. This new choice defines a Markov Chain Monte Carlo (MCMC) method that is well defined on the Hilbert space itself. As before, the algorithm described herein uses an enlarged phase space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Π</mi></semantics></math></inline-formula> having the target <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> as a marginal, together with a Hamiltonian flow that preserves <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Π</mi></semantics></math></inline-formula>. In the previous work, the authors explored a method where the phase space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> was augmented with Brownian bridges. With this new choice, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> is augmented by Ornstein–Uhlenbeck (OU) bridges. The covariance of Brownian bridges grows with its length, which has negative effects on the acceptance rate in the MCMC method. This contrasts with the covariance of OU bridges, which is independent of the path length. The ingredients of the new algorithm include the definition of the mass operator, the equations for the Hamiltonian flow, the (approximate) numerical integration of the evolution equations, and finally, the Metropolis–Hastings acceptance rule. Taken together, these constitute a robust method for sampling the target distribution in an almost dimension-free manner. The behavior of this novel algorithm is demonstrated by computer experiments for a particle moving in two dimensions, between two free-energy basins separated by an entropic barrier.https://www.mdpi.com/1099-4300/23/5/499Brownian dynamicsstochastic processessampling path spacetransition paths |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Francis J. Pinski |
spellingShingle |
Francis J. Pinski A Novel Hybrid Monte Carlo Algorithm for Sampling Path Space Entropy Brownian dynamics stochastic processes sampling path space transition paths |
author_facet |
Francis J. Pinski |
author_sort |
Francis J. Pinski |
title |
A Novel Hybrid Monte Carlo Algorithm for Sampling Path Space |
title_short |
A Novel Hybrid Monte Carlo Algorithm for Sampling Path Space |
title_full |
A Novel Hybrid Monte Carlo Algorithm for Sampling Path Space |
title_fullStr |
A Novel Hybrid Monte Carlo Algorithm for Sampling Path Space |
title_full_unstemmed |
A Novel Hybrid Monte Carlo Algorithm for Sampling Path Space |
title_sort |
novel hybrid monte carlo algorithm for sampling path space |
publisher |
MDPI AG |
series |
Entropy |
issn |
1099-4300 |
publishDate |
2021-04-01 |
description |
To sample from complex, high-dimensional distributions, one may choose algorithms based on the Hybrid Monte Carlo (HMC) method. HMC-based algorithms generate nonlocal moves alleviating diffusive behavior. Here, I build on an already defined HMC framework, hybrid Monte Carlo on Hilbert spaces (Beskos, et al. <i>Stoch. Proc. Applic.</i> 2011), that provides finite-dimensional approximations of measures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>, which have density with respect to a Gaussian measure on an infinite-dimensional Hilbert (path) space. In all HMC algorithms, one has some freedom to choose the mass operator. The novel feature of the algorithm described in this article lies in the choice of this operator. This new choice defines a Markov Chain Monte Carlo (MCMC) method that is well defined on the Hilbert space itself. As before, the algorithm described herein uses an enlarged phase space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Π</mi></semantics></math></inline-formula> having the target <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> as a marginal, together with a Hamiltonian flow that preserves <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Π</mi></semantics></math></inline-formula>. In the previous work, the authors explored a method where the phase space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> was augmented with Brownian bridges. With this new choice, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> is augmented by Ornstein–Uhlenbeck (OU) bridges. The covariance of Brownian bridges grows with its length, which has negative effects on the acceptance rate in the MCMC method. This contrasts with the covariance of OU bridges, which is independent of the path length. The ingredients of the new algorithm include the definition of the mass operator, the equations for the Hamiltonian flow, the (approximate) numerical integration of the evolution equations, and finally, the Metropolis–Hastings acceptance rule. Taken together, these constitute a robust method for sampling the target distribution in an almost dimension-free manner. The behavior of this novel algorithm is demonstrated by computer experiments for a particle moving in two dimensions, between two free-energy basins separated by an entropic barrier. |
topic |
Brownian dynamics stochastic processes sampling path space transition paths |
url |
https://www.mdpi.com/1099-4300/23/5/499 |
work_keys_str_mv |
AT francisjpinski anovelhybridmontecarloalgorithmforsamplingpathspace AT francisjpinski novelhybridmontecarloalgorithmforsamplingpathspace |
_version_ |
1721513962767384576 |