Melatonin Regulates Aging and Neurodegeneration through Energy Metabolism, Epigenetics, Autophagy and Circadian Rhythm Pathways

Brain aging is linked to certain types of neurodegenerative diseases and identifying new therapeutic targets has become critical. Melatonin, a pineal hormone, associates with molecules and signaling pathways that sense and influence energy metabolism, autophagy, and circadian rhythms, including insu...

Full description

Bibliographic Details
Main Authors: Anorut Jenwitheesuk, Chutikorn Nopparat, Sujira Mukda, Prapimpun Wongchitrat, Piyarat Govitrapong
Format: Article
Language:English
Published: MDPI AG 2014-09-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:http://www.mdpi.com/1422-0067/15/9/16848
Description
Summary:Brain aging is linked to certain types of neurodegenerative diseases and identifying new therapeutic targets has become critical. Melatonin, a pineal hormone, associates with molecules and signaling pathways that sense and influence energy metabolism, autophagy, and circadian rhythms, including insulin-like growth factor 1 (IGF-1), Forkhead box O (FoxOs), sirtuins and mammalian target of rapamycin (mTOR) signaling pathways. This review summarizes the current understanding of how melatonin, together with molecular, cellular and systemic energy metabolisms, regulates epigenetic processes in the neurons. This information will lead to a greater understanding of molecular epigenetic aging of the brain and anti-aging mechanisms to increase lifespan under healthy conditions.
ISSN:1422-0067