Normal Automorphisms of Free Burnside Groups of Period 3

If any normal subgroup of a group $G$ is $\phi$-invariant for some automorphism $\phi$ of $G$, then $\phi$ is called a normal automorphism. Each inner automorphism of a group is normal, but converse is not true in the general case. We prove that any normal automorphism of free Burnside group $B(m,3...

Full description

Bibliographic Details
Main Authors: Varujan Atabekyan, H.T. Aslanyan, A. E. Grigoryan
Format: Article
Language:English
Published: Republic of Armenia National Academy of Sciences 2017-12-01
Series:Armenian Journal of Mathematics
Subjects:
Online Access:http://armjmath.sci.am/index.php/ajm/article/view/157
id doaj-e068cf0d288a442bb4448ce02396bf15
record_format Article
spelling doaj-e068cf0d288a442bb4448ce02396bf152020-11-25T00:11:36ZengRepublic of Armenia National Academy of SciencesArmenian Journal of Mathematics1829-11632017-12-0192Normal Automorphisms of Free Burnside Groups of Period 3Varujan Atabekyan0H.T. Aslanyan1A. E. Grigoryan2Head of Chair Algebra and Geometry, Yerevan State UniversityRussian-Armenian University, 123 Hovsep Emin str. 0051 Yerevan, ArmeniaRussian-Armenian University, 123 Hovsep Emin str. 0051 Yerevan, Armenia If any normal subgroup of a group $G$ is $\phi$-invariant for some automorphism $\phi$ of $G$, then $\phi$ is called a normal automorphism. Each inner automorphism of a group is normal, but converse is not true in the general case. We prove that any normal automorphism of free Burnside group $B(m,3)$ of period 3 is inner for all rank $m\ge3$. http://armjmath.sci.am/index.php/ajm/article/view/157normal automorphism, inner automorphism, periodic group, free Burnside group, free group
collection DOAJ
language English
format Article
sources DOAJ
author Varujan Atabekyan
H.T. Aslanyan
A. E. Grigoryan
spellingShingle Varujan Atabekyan
H.T. Aslanyan
A. E. Grigoryan
Normal Automorphisms of Free Burnside Groups of Period 3
Armenian Journal of Mathematics
normal automorphism, inner automorphism, periodic group, free Burnside group, free group
author_facet Varujan Atabekyan
H.T. Aslanyan
A. E. Grigoryan
author_sort Varujan Atabekyan
title Normal Automorphisms of Free Burnside Groups of Period 3
title_short Normal Automorphisms of Free Burnside Groups of Period 3
title_full Normal Automorphisms of Free Burnside Groups of Period 3
title_fullStr Normal Automorphisms of Free Burnside Groups of Period 3
title_full_unstemmed Normal Automorphisms of Free Burnside Groups of Period 3
title_sort normal automorphisms of free burnside groups of period 3
publisher Republic of Armenia National Academy of Sciences
series Armenian Journal of Mathematics
issn 1829-1163
publishDate 2017-12-01
description If any normal subgroup of a group $G$ is $\phi$-invariant for some automorphism $\phi$ of $G$, then $\phi$ is called a normal automorphism. Each inner automorphism of a group is normal, but converse is not true in the general case. We prove that any normal automorphism of free Burnside group $B(m,3)$ of period 3 is inner for all rank $m\ge3$.
topic normal automorphism, inner automorphism, periodic group, free Burnside group, free group
url http://armjmath.sci.am/index.php/ajm/article/view/157
work_keys_str_mv AT varujanatabekyan normalautomorphismsoffreeburnsidegroupsofperiod3
AT htaslanyan normalautomorphismsoffreeburnsidegroupsofperiod3
AT aegrigoryan normalautomorphismsoffreeburnsidegroupsofperiod3
_version_ 1725403205096964096