Normal Automorphisms of Free Burnside Groups of Period 3
If any normal subgroup of a group $G$ is $\phi$-invariant for some automorphism $\phi$ of $G$, then $\phi$ is called a normal automorphism. Each inner automorphism of a group is normal, but converse is not true in the general case. We prove that any normal automorphism of free Burnside group $B(m,3...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Republic of Armenia National Academy of Sciences
2017-12-01
|
Series: | Armenian Journal of Mathematics |
Subjects: | |
Online Access: | http://armjmath.sci.am/index.php/ajm/article/view/157 |
id |
doaj-e068cf0d288a442bb4448ce02396bf15 |
---|---|
record_format |
Article |
spelling |
doaj-e068cf0d288a442bb4448ce02396bf152020-11-25T00:11:36ZengRepublic of Armenia National Academy of SciencesArmenian Journal of Mathematics1829-11632017-12-0192Normal Automorphisms of Free Burnside Groups of Period 3Varujan Atabekyan0H.T. Aslanyan1A. E. Grigoryan2Head of Chair Algebra and Geometry, Yerevan State UniversityRussian-Armenian University, 123 Hovsep Emin str. 0051 Yerevan, ArmeniaRussian-Armenian University, 123 Hovsep Emin str. 0051 Yerevan, Armenia If any normal subgroup of a group $G$ is $\phi$-invariant for some automorphism $\phi$ of $G$, then $\phi$ is called a normal automorphism. Each inner automorphism of a group is normal, but converse is not true in the general case. We prove that any normal automorphism of free Burnside group $B(m,3)$ of period 3 is inner for all rank $m\ge3$. http://armjmath.sci.am/index.php/ajm/article/view/157normal automorphism, inner automorphism, periodic group, free Burnside group, free group |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Varujan Atabekyan H.T. Aslanyan A. E. Grigoryan |
spellingShingle |
Varujan Atabekyan H.T. Aslanyan A. E. Grigoryan Normal Automorphisms of Free Burnside Groups of Period 3 Armenian Journal of Mathematics normal automorphism, inner automorphism, periodic group, free Burnside group, free group |
author_facet |
Varujan Atabekyan H.T. Aslanyan A. E. Grigoryan |
author_sort |
Varujan Atabekyan |
title |
Normal Automorphisms of Free Burnside Groups of Period 3 |
title_short |
Normal Automorphisms of Free Burnside Groups of Period 3 |
title_full |
Normal Automorphisms of Free Burnside Groups of Period 3 |
title_fullStr |
Normal Automorphisms of Free Burnside Groups of Period 3 |
title_full_unstemmed |
Normal Automorphisms of Free Burnside Groups of Period 3 |
title_sort |
normal automorphisms of free burnside groups of period 3 |
publisher |
Republic of Armenia National Academy of Sciences |
series |
Armenian Journal of Mathematics |
issn |
1829-1163 |
publishDate |
2017-12-01 |
description |
If any normal subgroup of a group $G$ is $\phi$-invariant for some automorphism $\phi$ of $G$, then $\phi$ is called a normal automorphism. Each inner automorphism of a group is normal, but converse is not true in the general case. We prove that any normal automorphism of free Burnside group $B(m,3)$ of period 3 is inner for all rank $m\ge3$.
|
topic |
normal automorphism, inner automorphism, periodic group, free Burnside group, free group |
url |
http://armjmath.sci.am/index.php/ajm/article/view/157 |
work_keys_str_mv |
AT varujanatabekyan normalautomorphismsoffreeburnsidegroupsofperiod3 AT htaslanyan normalautomorphismsoffreeburnsidegroupsofperiod3 AT aegrigoryan normalautomorphismsoffreeburnsidegroupsofperiod3 |
_version_ |
1725403205096964096 |