Testing of the Wireless Sensor Network for the Express-Diagnostic of the State of Plant

The authors reviewed the types of network testing. The most common are simulation modeling, mock-up modeling, and full-scale experiments. It was examined existing software environments for simulation and debugging kits for mock testing. The main definitions and terms on the theory of experiment plan...

Full description

Bibliographic Details
Main Authors: H. Antonova, A. Kedych
Format: Article
Language:English
Published: V.M. Glushkov Institute of Cybernetics 2020-10-01
Series:Кібернетика та комп'ютерні технології
Subjects:
Online Access:http://cctech.org.ua/13-vertikalnoe-menyu-en/176-abstract-20-3-9-arte
Description
Summary:The authors reviewed the types of network testing. The most common are simulation modeling, mock-up modeling, and full-scale experiments. It was examined existing software environments for simulation and debugging kits for mock testing. The main definitions and terms on the theory of experiment planning are given. According to the theory of experiment planning, the authors developed a plan for conducting a full-scale experiment and defined an algorithm for testing a wireless sensor network for express diagnostics of plants' state. Network testing parameters are the quality of network communication; network formation time; network communication distance; and battery life of sensors. The preparation and process of conducting a full-scale experiment for testing a WSN sample is described in detail. Wireless sensor network testing was carried out by different clusters, at different distances in five stages. During the experiment on testing the WSN, the operation of individual network nodes was checked, and the operation of the network as a whole. During the testing period, no abnormal operation of the sensors and the coordinator was revealed. 82 measurements were made in just five stages. The communication quality of the wireless sensor network has been checked. When testing the network, the transmission of data packets from the sensors to the coordinator was mostly successful. The integral estimate of unsuccessful data transmission sessions in the network was calculated. The communication range of the network at a distance of 20, 30, 40 and 60 m was checked. A graph of the dependence of the sensor signal power on the distance was built. Statistics were obtained on the decrease in the battery charge for each sensor. Based on the results of a full-scale experiment, the operation of a wireless sensor network for express diagnostics of the state of plants is considered successful.
ISSN:2707-4501
2707-451X