The Convergence Rate for a <inline-formula> <graphic file="1029-242X-2010-249507-i1.gif"/></inline-formula>-Functional in Learning Theory

<p/> <p>It is known that in the field of learning theory based on reproducing kernel Hilbert spaces the upper bounds estimate for a <inline-formula> <graphic file="1029-242X-2010-249507-i2.gif"/></inline-formula>-functional is needed. In the present paper, the...

Full description

Bibliographic Details
Main Authors: Xiang Dao-Hong, Sheng Bao-Huai
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2010/249507
Description
Summary:<p/> <p>It is known that in the field of learning theory based on reproducing kernel Hilbert spaces the upper bounds estimate for a <inline-formula> <graphic file="1029-242X-2010-249507-i2.gif"/></inline-formula>-functional is needed. In the present paper, the upper bounds for the <inline-formula> <graphic file="1029-242X-2010-249507-i3.gif"/></inline-formula>-functional on the unit sphere are estimated with spherical harmonics approximation. The results show that convergence rate of the <inline-formula> <graphic file="1029-242X-2010-249507-i4.gif"/></inline-formula>-functional depends upon the smoothness of both the approximated function and the reproducing kernels.</p>
ISSN:1025-5834
1029-242X