Synthesis and characterization of Fe3O4-HfO2 nanoparticles by hyperfine interactions measurements
Nanoparticles (NPs) that combine biocompatibility and enhanced physical characteristics for biomedical applications are currently an area of intense scientific research. Hafnium oxide NPs are an innovative approach in the anticancer treatment by radiotherapy due to their low toxicity and enhancement...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2021-01-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/9.0000235 |
id |
doaj-e00f3ae0d838495eacc9549924093eed |
---|---|
record_format |
Article |
spelling |
doaj-e00f3ae0d838495eacc9549924093eed2021-02-02T21:32:44ZengAIP Publishing LLCAIP Advances2158-32262021-01-01111015047015047-410.1063/9.0000235Synthesis and characterization of Fe3O4-HfO2 nanoparticles by hyperfine interactions measurementsT. S. N. Sales0A. Burimova1P. S. Rodrigues2I. T. Matos3G. A. Cabrera-Pasca4R. N. Saxena5L. F. D. Pereira6L. Otubo7A. W. Carbonari8Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP 05508-000, BrazilInstituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP 05508-000, BrazilInstituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP 05508-000, BrazilInstituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP 05508-000, BrazilUniversidade Federal do Pará, Abaetetuba, PA 68440-000, BrazilInstituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP 05508-000, BrazilInstituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP 05508-000, BrazilInstituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP 05508-000, BrazilInstituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP 05508-000, BrazilNanoparticles (NPs) that combine biocompatibility and enhanced physical characteristics for biomedical applications are currently an area of intense scientific research. Hafnium oxide NPs are an innovative approach in the anticancer treatment by radiotherapy due to their low toxicity and enhancement of local dose in the tumor reducing the total radiation dose for the patient. The combination of this property with the excellent magnetic hyperthermia performance of Fe3O4 NPs can produce a promising nanomaterial for cancer therapy. In this work, we attempted to synthesize nanoscale samples of HfO2 doped with nominal 10 at.% Fe, and Fe3O4 doped with Hf at 10 at.% level using simple chemical routes. The crystal structure of the samples was characterized by X-ray diffraction. The material was irradiated with neutrons in a research reactor, the nuclear reaction 180Hf(n, γ)181Hf yielding the probe nucleus 181Hf(181Ta) used in the perturbed angular correlations experiments to measure hyperfine interactions. Despite their immediate response to the external magnetic field, at local level both samples showed only electric quadrupole interaction typical of the monoclinic hafnia indicating that Fe replaces Hf in HfO2 NPs, but, rather than substituting Fe, Hf enters magnetite in the form of HfO2 clusters. Transmission Electron Microscopy was exploited to study the morphology of these complex systems, as well as to localize hafnia clusters and understand the nature of their coupling to Fe3O4 specks.http://dx.doi.org/10.1063/9.0000235 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
T. S. N. Sales A. Burimova P. S. Rodrigues I. T. Matos G. A. Cabrera-Pasca R. N. Saxena L. F. D. Pereira L. Otubo A. W. Carbonari |
spellingShingle |
T. S. N. Sales A. Burimova P. S. Rodrigues I. T. Matos G. A. Cabrera-Pasca R. N. Saxena L. F. D. Pereira L. Otubo A. W. Carbonari Synthesis and characterization of Fe3O4-HfO2 nanoparticles by hyperfine interactions measurements AIP Advances |
author_facet |
T. S. N. Sales A. Burimova P. S. Rodrigues I. T. Matos G. A. Cabrera-Pasca R. N. Saxena L. F. D. Pereira L. Otubo A. W. Carbonari |
author_sort |
T. S. N. Sales |
title |
Synthesis and characterization of Fe3O4-HfO2 nanoparticles by hyperfine interactions measurements |
title_short |
Synthesis and characterization of Fe3O4-HfO2 nanoparticles by hyperfine interactions measurements |
title_full |
Synthesis and characterization of Fe3O4-HfO2 nanoparticles by hyperfine interactions measurements |
title_fullStr |
Synthesis and characterization of Fe3O4-HfO2 nanoparticles by hyperfine interactions measurements |
title_full_unstemmed |
Synthesis and characterization of Fe3O4-HfO2 nanoparticles by hyperfine interactions measurements |
title_sort |
synthesis and characterization of fe3o4-hfo2 nanoparticles by hyperfine interactions measurements |
publisher |
AIP Publishing LLC |
series |
AIP Advances |
issn |
2158-3226 |
publishDate |
2021-01-01 |
description |
Nanoparticles (NPs) that combine biocompatibility and enhanced physical characteristics for biomedical applications are currently an area of intense scientific research. Hafnium oxide NPs are an innovative approach in the anticancer treatment by radiotherapy due to their low toxicity and enhancement of local dose in the tumor reducing the total radiation dose for the patient. The combination of this property with the excellent magnetic hyperthermia performance of Fe3O4 NPs can produce a promising nanomaterial for cancer therapy. In this work, we attempted to synthesize nanoscale samples of HfO2 doped with nominal 10 at.% Fe, and Fe3O4 doped with Hf at 10 at.% level using simple chemical routes. The crystal structure of the samples was characterized by X-ray diffraction. The material was irradiated with neutrons in a research reactor, the nuclear reaction 180Hf(n, γ)181Hf yielding the probe nucleus 181Hf(181Ta) used in the perturbed angular correlations experiments to measure hyperfine interactions. Despite their immediate response to the external magnetic field, at local level both samples showed only electric quadrupole interaction typical of the monoclinic hafnia indicating that Fe replaces Hf in HfO2 NPs, but, rather than substituting Fe, Hf enters magnetite in the form of HfO2 clusters. Transmission Electron Microscopy was exploited to study the morphology of these complex systems, as well as to localize hafnia clusters and understand the nature of their coupling to Fe3O4 specks. |
url |
http://dx.doi.org/10.1063/9.0000235 |
work_keys_str_mv |
AT tsnsales synthesisandcharacterizationoffe3o4hfo2nanoparticlesbyhyperfineinteractionsmeasurements AT aburimova synthesisandcharacterizationoffe3o4hfo2nanoparticlesbyhyperfineinteractionsmeasurements AT psrodrigues synthesisandcharacterizationoffe3o4hfo2nanoparticlesbyhyperfineinteractionsmeasurements AT itmatos synthesisandcharacterizationoffe3o4hfo2nanoparticlesbyhyperfineinteractionsmeasurements AT gacabrerapasca synthesisandcharacterizationoffe3o4hfo2nanoparticlesbyhyperfineinteractionsmeasurements AT rnsaxena synthesisandcharacterizationoffe3o4hfo2nanoparticlesbyhyperfineinteractionsmeasurements AT lfdpereira synthesisandcharacterizationoffe3o4hfo2nanoparticlesbyhyperfineinteractionsmeasurements AT lotubo synthesisandcharacterizationoffe3o4hfo2nanoparticlesbyhyperfineinteractionsmeasurements AT awcarbonari synthesisandcharacterizationoffe3o4hfo2nanoparticlesbyhyperfineinteractionsmeasurements |
_version_ |
1724291329919287296 |