Limb bone scaling in hopping macropods and quadrupedal artiodactyls

Bone adaptation is modulated by the timing, direction, rate and magnitude of mechanical loads. To investigate whether frequent slow, or infrequent fast, gaits could dominate bone adaptation to load, we compared scaling of the limb bones from two mammalian herbivore clades that use radically differen...

Full description

Bibliographic Details
Main Authors: Michael Doube, Alessandro A. Felder, Melissa Y. Chua, Kalyani Lodhia, Michał M. Kłosowski, John R. Hutchinson, Sandra J. Shefelbine
Format: Article
Language:English
Published: The Royal Society 2018-01-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.180152
Description
Summary:Bone adaptation is modulated by the timing, direction, rate and magnitude of mechanical loads. To investigate whether frequent slow, or infrequent fast, gaits could dominate bone adaptation to load, we compared scaling of the limb bones from two mammalian herbivore clades that use radically different high-speed gaits, bipedal hopping (suborder Macropodiformes; kangaroos and kin) and quadrupedal galloping (order Artiodactyla; goats, deer and kin). Forelimb and hindlimb bones were collected from 20 artiodactyl and 15 macropod species (body mass M 1.05–1536 kg) and scanned in computed tomography or X-ray microtomography. Second moment of area (Imax) and bone length (l) were measured. Scaling relations (y = axb) were calculated for l versus M for each bone and for Imax versus M and Imax versus l for every 5% of length. Imax versus M scaling relationships were broadly similar between clades despite the macropod forelimb being nearly unloaded, and the hindlimb highly loaded, during bipedal hopping. Imax versus l and l versus M scaling were related to locomotor and behavioural specializations. Low-intensity loads may be sufficient to maintain bone mass across a wide range of species. Occasional high-intensity gaits might not break through the load sensitivity saturation engendered by frequent low-intensity gaits.
ISSN:2054-5703