Summary: | In both the private and public sectors, green hydrogen is treated as a promising alternative to fossil energy commodities. However, building up production capacities involves significant carbon production, especially when considering secondary infrastructure, e.g., renewable power sources. The amount of required capacity as well as the carbon production involved is calculated in this article. Using Germany as an example we show that the switch to purely green hydrogen involves significant bow waves in terms of carbon production as well as financial and resource demand. An economic model for an optimal decision is derived and—based on empirical estimates—calibrated. It shows that, even if green hydrogen is a competitive technology in the future, using alternatives like turquoise hydrogen or carbon capture and storage is necessary to significantly reduce or even avoid the mentioned bow waves.
|