Exploiting horizontal pleiotropy to search for causal pathways within a Mendelian randomization framework
In Mendelian randomization (MR) studies, one typically selects SNPs as instrumental variables that do not directly affect the outcome to avoid violation of MR assumptions. Here, Cho et al. present a framework, MR-TRYX, that leverages knowledge of such outliers of horizontal pleiotropy to identify pu...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2020-02-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-020-14452-4 |
id |
doaj-dfbcb932f4774023a181f55ca924bfe8 |
---|---|
record_format |
Article |
spelling |
doaj-dfbcb932f4774023a181f55ca924bfe82021-05-11T08:47:46ZengNature Publishing GroupNature Communications2041-17232020-02-0111111310.1038/s41467-020-14452-4Exploiting horizontal pleiotropy to search for causal pathways within a Mendelian randomization frameworkYoonsu Cho0Philip C. Haycock1Eleanor Sanderson2Tom R. Gaunt3Jie Zheng4Andrew P. Morris5George Davey Smith6Gibran Hemani7MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of BristolMRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of BristolMRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of BristolMRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of BristolMRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of BristolDepartment of Biostatistics, University of LiverpoolMRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of BristolMRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of BristolIn Mendelian randomization (MR) studies, one typically selects SNPs as instrumental variables that do not directly affect the outcome to avoid violation of MR assumptions. Here, Cho et al. present a framework, MR-TRYX, that leverages knowledge of such outliers of horizontal pleiotropy to identify putative causal relationships between exposure and outcome.https://doi.org/10.1038/s41467-020-14452-4 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yoonsu Cho Philip C. Haycock Eleanor Sanderson Tom R. Gaunt Jie Zheng Andrew P. Morris George Davey Smith Gibran Hemani |
spellingShingle |
Yoonsu Cho Philip C. Haycock Eleanor Sanderson Tom R. Gaunt Jie Zheng Andrew P. Morris George Davey Smith Gibran Hemani Exploiting horizontal pleiotropy to search for causal pathways within a Mendelian randomization framework Nature Communications |
author_facet |
Yoonsu Cho Philip C. Haycock Eleanor Sanderson Tom R. Gaunt Jie Zheng Andrew P. Morris George Davey Smith Gibran Hemani |
author_sort |
Yoonsu Cho |
title |
Exploiting horizontal pleiotropy to search for causal pathways within a Mendelian randomization framework |
title_short |
Exploiting horizontal pleiotropy to search for causal pathways within a Mendelian randomization framework |
title_full |
Exploiting horizontal pleiotropy to search for causal pathways within a Mendelian randomization framework |
title_fullStr |
Exploiting horizontal pleiotropy to search for causal pathways within a Mendelian randomization framework |
title_full_unstemmed |
Exploiting horizontal pleiotropy to search for causal pathways within a Mendelian randomization framework |
title_sort |
exploiting horizontal pleiotropy to search for causal pathways within a mendelian randomization framework |
publisher |
Nature Publishing Group |
series |
Nature Communications |
issn |
2041-1723 |
publishDate |
2020-02-01 |
description |
In Mendelian randomization (MR) studies, one typically selects SNPs as instrumental variables that do not directly affect the outcome to avoid violation of MR assumptions. Here, Cho et al. present a framework, MR-TRYX, that leverages knowledge of such outliers of horizontal pleiotropy to identify putative causal relationships between exposure and outcome. |
url |
https://doi.org/10.1038/s41467-020-14452-4 |
work_keys_str_mv |
AT yoonsucho exploitinghorizontalpleiotropytosearchforcausalpathwayswithinamendelianrandomizationframework AT philipchaycock exploitinghorizontalpleiotropytosearchforcausalpathwayswithinamendelianrandomizationframework AT eleanorsanderson exploitinghorizontalpleiotropytosearchforcausalpathwayswithinamendelianrandomizationframework AT tomrgaunt exploitinghorizontalpleiotropytosearchforcausalpathwayswithinamendelianrandomizationframework AT jiezheng exploitinghorizontalpleiotropytosearchforcausalpathwayswithinamendelianrandomizationframework AT andrewpmorris exploitinghorizontalpleiotropytosearchforcausalpathwayswithinamendelianrandomizationframework AT georgedaveysmith exploitinghorizontalpleiotropytosearchforcausalpathwayswithinamendelianrandomizationframework AT gibranhemani exploitinghorizontalpleiotropytosearchforcausalpathwayswithinamendelianrandomizationframework |
_version_ |
1721450483591151616 |