Multiacquisition Variable-Resonance Image Combination Magnetic Resonance Imaging Used to Study Detailed Bone Apposition and Fixation of an Additively Manufactured Cementless Acetabular Shell

Background: The ability to utilize magnetic resonance imaging (MRI) to assess bony fixation in 3 dimensions may allow a better understanding of the implant design and bony integration. We hypothesized that a new 3-dimensionally printed cementless highly porous acetabular component (Stryker Trident I...

Full description

Bibliographic Details
Main Authors: Vignesh K. Alamanda, MD, Ivan Demartino, MD, Hollis G. Potter, MD, Matthew F. Koff, PhD, Bin Lin, MS, Ahava Muskat, BA, Geoffrey H. Westrich, MD
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:Arthroplasty Today
Subjects:
MRI
Online Access:http://www.sciencedirect.com/science/article/pii/S2352344120301382
Description
Summary:Background: The ability to utilize magnetic resonance imaging (MRI) to assess bony fixation in 3 dimensions may allow a better understanding of the implant design and bony integration. We hypothesized that a new 3-dimensionally printed cementless highly porous acetabular component (Stryker Trident II TritaniumTM) would show better fixation than an earlier cup from the same manufacturer as assessed by the noninvasive technique of multispectral MRI. Methods: Multiacquisition variable-resonance image combination selective metal suppression MRI was performed in 19 patients implanted with a new 3-dimensionally printed cup and 20 patients who had received a previous-generation cup from the same manufacturer at 1-year follow-up. Each cup was graded globally as well as by 9 specific zones. Integration grades were performed for each zone: 0, full bone integration; 1, fibrous membrane present; 2, osteolysis; and 3, fluid present. A mixed-effects logistic regression model was used to compare fixation between the 2 groups. Results: All cups in both cohorts showed greater than 90% estimated global bony integration (3-dimensionally printed cups, 99.4%; regular cups 91.6%) with no osteolysis or fluid observed in any cup. The 3-dimensionally printed cup had 1 of 171 zones (0.6%) graded as fibrous membrane present, while the 2-dimensional group had 15 of 180 zones (8.3%) graded as fibrous. Of note, screw hole regions were omitted but may be read as fibrous membrane areas. Conclusion: Using multiacquisition variable-resonance image combination selective MRI, our analysis showed greater osteointegration and less fibrous membrane formation in the 3-dimensionally printed cups than the control group at 1-year follow-up.
ISSN:2352-3441