Lane Position Detection Based on Long Short-Term Memory (LSTM)

Accurate detection of lane lines is of great significance for improving vehicle driving safety. In our previous research, by improving the horizontal and vertical density of the detection grid in the YOLO v3 (You Only Look Once, the 3th version) model, the obtained lane line (LL) algorithm, YOLO v3...

Full description

Bibliographic Details
Main Authors: Wei Yang, Xiang Zhang, Qian Lei, Dengye Shen, Ping Xiao, Yu Huang
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/11/3115
Description
Summary:Accurate detection of lane lines is of great significance for improving vehicle driving safety. In our previous research, by improving the horizontal and vertical density of the detection grid in the YOLO v3 (You Only Look Once, the 3th version) model, the obtained lane line (LL) algorithm, YOLO v3 (S × 2S), has high accuracy. However, like the traditional LL detection algorithms, they do not use spatial information and have low detection accuracy under occlusion, deformation, worn, poor lighting, and other non-ideal environmental conditions. After studying the spatial information between LLs and learning the distribution law of LLs, an LL prediction model based on long short-term memory (LSTM) and recursive neural network (RcNN) was established; the method can predict the future LL position by using historical LL position information. Moreover, by combining the LL information predicted with YOLO v3 (S × 2S) detection results using Dempster Shafer (D-S) evidence theory, the LL detection accuracy can be improved effectively, and the uncertainty of this system be reduced correspondingly. The results show that the accuracy of LL detection can be significantly improved in rainy, snowy weather, and obstacle scenes.
ISSN:1424-8220