R-Norm Entropy and R-Norm Divergence in Fuzzy Probability Spaces

In the presented article, we define the R-norm entropy and the conditional R-norm entropy of partitions of a given fuzzy probability space and study the properties of the suggested entropy measures. In addition, we introduce the concept of R-norm divergence of fuzzy P-measures and we derive fundamen...

Full description

Bibliographic Details
Main Authors: Dagmar Markechová, Batool Mosapour, Abolfazl Ebrahimzadeh
Format: Article
Language:English
Published: MDPI AG 2018-04-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/20/4/272
Description
Summary:In the presented article, we define the R-norm entropy and the conditional R-norm entropy of partitions of a given fuzzy probability space and study the properties of the suggested entropy measures. In addition, we introduce the concept of R-norm divergence of fuzzy P-measures and we derive fundamental properties of this quantity. Specifically, it is shown that the Shannon entropy and the conditional Shannon entropy of fuzzy partitions can be derived from the R-norm entropy and conditional R-norm entropy of fuzzy partitions, respectively, as the limiting cases for R going to 1; the Kullback–Leibler divergence of fuzzy P-measures may be inferred from the R-norm divergence of fuzzy P-measures as the limiting case for R going to 1. We also provide numerical examples that illustrate the results.
ISSN:1099-4300