New Treatment for Alzheimer’s Disease, Kamikihito, Reverses Amyloid-β-Induced Progression of Tau Phosphorylation and Axonal Atrophy
Aims. We previously reported that kamikihito (KKT), a traditional Japanese medicine, improved memory impairment and reversed the degeneration of axons in the 5XFAD mouse model of Alzheimer’s disease (AD). However, the mechanism underlying the effects of KKT remained unknown. The aim of the present s...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Evidence-Based Complementary and Alternative Medicine |
Online Access: | http://dx.doi.org/10.1155/2014/706487 |
id |
doaj-df98eccd7b474dccb5270bb5c70909b7 |
---|---|
record_format |
Article |
spelling |
doaj-df98eccd7b474dccb5270bb5c70909b72020-11-24T21:39:36ZengHindawi LimitedEvidence-Based Complementary and Alternative Medicine1741-427X1741-42882014-01-01201410.1155/2014/706487706487New Treatment for Alzheimer’s Disease, Kamikihito, Reverses Amyloid-β-Induced Progression of Tau Phosphorylation and Axonal AtrophyHidetoshi Watari0Yutaka Shimada1Chihiro Tohda2Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, JapanDepartment of Japanese Oriental Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, JapanDivision of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, JapanAims. We previously reported that kamikihito (KKT), a traditional Japanese medicine, improved memory impairment and reversed the degeneration of axons in the 5XFAD mouse model of Alzheimer’s disease (AD). However, the mechanism underlying the effects of KKT remained unknown. The aim of the present study was to investigate the mechanism by which KKT reverses the progression of axonal degeneration. Methods. Primary cultured cortical neurons were treated with amyloid beta (Aβ) fragment comprising amino acid residues (25–35) (10 μM) in an in vitro AD model. KKT (10 μg/mL) was administered to the cells before or after Aβ treatment. The effects of KKT on Aβ-induced tau phosphorylation, axonal atrophy, and protein phosphatase 2A (PP2A) activity were investigated. We also performed an in vivo assay in which KKT (500 mg/kg/day) was administered to 5XFAD mice once a day for 15 days. Cerebral cortex homogenates were used to measure PP2A activity. Results. KKT improved Aβ-induced tau phosphorylation and axonal atrophy after they had already progressed. In addition, KKT increased PP2A activity in vitro and in vivo. Conclusions. KKT reversed the progression of Aβ-induced axonal degeneration. KKT reversed axonal degeneration at least in part through its role as an exogenous PP2A stimulator.http://dx.doi.org/10.1155/2014/706487 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hidetoshi Watari Yutaka Shimada Chihiro Tohda |
spellingShingle |
Hidetoshi Watari Yutaka Shimada Chihiro Tohda New Treatment for Alzheimer’s Disease, Kamikihito, Reverses Amyloid-β-Induced Progression of Tau Phosphorylation and Axonal Atrophy Evidence-Based Complementary and Alternative Medicine |
author_facet |
Hidetoshi Watari Yutaka Shimada Chihiro Tohda |
author_sort |
Hidetoshi Watari |
title |
New Treatment for Alzheimer’s Disease, Kamikihito, Reverses Amyloid-β-Induced Progression of Tau Phosphorylation and Axonal Atrophy |
title_short |
New Treatment for Alzheimer’s Disease, Kamikihito, Reverses Amyloid-β-Induced Progression of Tau Phosphorylation and Axonal Atrophy |
title_full |
New Treatment for Alzheimer’s Disease, Kamikihito, Reverses Amyloid-β-Induced Progression of Tau Phosphorylation and Axonal Atrophy |
title_fullStr |
New Treatment for Alzheimer’s Disease, Kamikihito, Reverses Amyloid-β-Induced Progression of Tau Phosphorylation and Axonal Atrophy |
title_full_unstemmed |
New Treatment for Alzheimer’s Disease, Kamikihito, Reverses Amyloid-β-Induced Progression of Tau Phosphorylation and Axonal Atrophy |
title_sort |
new treatment for alzheimer’s disease, kamikihito, reverses amyloid-β-induced progression of tau phosphorylation and axonal atrophy |
publisher |
Hindawi Limited |
series |
Evidence-Based Complementary and Alternative Medicine |
issn |
1741-427X 1741-4288 |
publishDate |
2014-01-01 |
description |
Aims. We previously reported that kamikihito (KKT), a traditional Japanese medicine, improved memory impairment and reversed the degeneration of axons in the 5XFAD mouse model of Alzheimer’s disease (AD). However, the mechanism underlying the effects of KKT remained unknown. The aim of the present study was to investigate the mechanism by which KKT reverses the progression of axonal degeneration. Methods. Primary cultured cortical neurons were treated with amyloid beta (Aβ) fragment comprising amino acid residues (25–35) (10 μM) in an in vitro AD model. KKT (10 μg/mL) was administered to the cells before or after Aβ treatment. The effects of KKT on Aβ-induced tau phosphorylation, axonal atrophy, and protein phosphatase 2A (PP2A) activity were investigated. We also performed an in vivo assay in which KKT (500 mg/kg/day) was administered to 5XFAD mice once a day for 15 days. Cerebral cortex homogenates were used to measure PP2A activity. Results. KKT improved Aβ-induced tau phosphorylation and axonal atrophy after they had already progressed. In addition, KKT increased PP2A activity in vitro and in vivo. Conclusions. KKT reversed the progression of Aβ-induced axonal degeneration. KKT reversed axonal degeneration at least in part through its role as an exogenous PP2A stimulator. |
url |
http://dx.doi.org/10.1155/2014/706487 |
work_keys_str_mv |
AT hidetoshiwatari newtreatmentforalzheimersdiseasekamikihitoreversesamyloidbinducedprogressionoftauphosphorylationandaxonalatrophy AT yutakashimada newtreatmentforalzheimersdiseasekamikihitoreversesamyloidbinducedprogressionoftauphosphorylationandaxonalatrophy AT chihirotohda newtreatmentforalzheimersdiseasekamikihitoreversesamyloidbinducedprogressionoftauphosphorylationandaxonalatrophy |
_version_ |
1725930357678669824 |