Preparation and Characterization of Some Sol-Gel Modified Silica Coatings Deposited on Polyvinyl Chloride (PVC) Substrates

Transparent and antireflective coatings were prepared by deposition of modified silica materials onto polyvinyl chloride (PVC) substrates. These materials were obtained by the sol-gel route in acidic medium, at room temperature (25 °C), using different alkoxysilanes with various functional groups (m...

Full description

Bibliographic Details
Main Authors: Violeta Purcar, Valentin Rădițoiu, Alina Rădițoiu, Raluca Manea, Florentina Monica Raduly, Georgiana Cornelia Ispas, Adriana Nicoleta Frone, Cristian Andi Nicolae, Raluca Augusta Gabor, Mihai Anastasescu, Hermine Stroescu, Simona Căprărescu
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Coatings
Subjects:
Online Access:https://www.mdpi.com/2079-6412/11/1/11
Description
Summary:Transparent and antireflective coatings were prepared by deposition of modified silica materials onto polyvinyl chloride (PVC) substrates. These materials were obtained by the sol-gel route in acidic medium, at room temperature (25 °C), using different alkoxysilanes with various functional groups (methyl, vinyl, octyl or hexadecyl). Physicochemical and microstructural properties of resulted silica materials and of thin coatings were investigated through Fourier Transforms Infrared Spectroscopy (FTIR), UV-Vis spectroscopy, Thermal Gravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), Atomic Force Microscopy (AFM) and ellipsometric measurements. Wetting behaviors of the silica coatings were evaluated by measurement of static contact angle against water. FTIR spectra of materials confirmed the high degree of cross-linking that result from the formation of the inorganic backbone through the hydrolysis and polycondensation reactions together with the formation of the organic network. These sol-gel silica coatings showed a reduction in the reflectance (10%) compared with uncoated PVC substrate. AFM reveals that the films are uniform, and adherent to the substrate, but their morphology is strongly influenced by the chemical composition of the coating matrices. These silica coatings can be useful for potential electronic and optical devices.
ISSN:2079-6412