A COMBINED USE OF FDM AND DOE METHOD TO DERIVE A NEW TRANSIENT SIMPLIFIED SEMI-ANALYTICAL MODEL: A CASE STUDY OF ANHYDRITE RADIANT SLAB

Radiant floor heating systems (FHS) are considered as reliable heating systems since they ensure maintaining inside air temperature and reduce its fluctuations more efficiently than conventional heating systems. The presented study investigates the dynamic thermal response of an experimental FHS equ...

Full description

Bibliographic Details
Main Authors: Merabtine Abdelatif, Kheiri Abdelhamid, Mokraoui Salim
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2020/26/matecconf_icome2019_01002.pdf
Description
Summary:Radiant floor heating systems (FHS) are considered as reliable heating systems since they ensure maintaining inside air temperature and reduce its fluctuations more efficiently than conventional heating systems. The presented study investigates the dynamic thermal response of an experimental FHS equipped with an anhydrite radiant slab. A new simplified model based on an analytical correlation is proposed to evaluate the heating radiant slab surface temperature and examine its thermal behavior under dynamic conditions. In order the validate the developed analytical model, an experimental scenario, under transient conditions, was performed in a monitored full-scale test cell. 2D and 3D numerical models were also developed to evaluate the accuracy of the analytical model. The method of Design of Experiments (DoE) was used to both derive meta-models, to analytically estimate the surface temperature, and perform a sensitivity study.
ISSN:2261-236X