Experimentally minimized beam emittance from an L-band photoinjector

High brightness electron sources for linac based free-electron lasers (FELs) are being developed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ). Production of electron bunches with extremely small transverse emittance is the focus of the PITZ scientific program. The photoinjector o...

Full description

Bibliographic Details
Main Authors: M. Krasilnikov, F. Stephan, G. Asova, H.-J. Grabosch, M. Groß, L. Hakobyan, I. Isaev, Y. Ivanisenko, L. Jachmann, M. Khojoyan, G. Klemz, W. Köhler, M. Mahgoub, D. Malyutin, M. Nozdrin, A. Oppelt, M. Otevrel, B. Petrosyan, S. Rimjaem, A. Shapovalov, G. Vashchenko, S. Weidinger, R. Wenndorff, K. Flöttmann, M. Hoffmann, S. Lederer, H. Schlarb, S. Schreiber, I. Templin, I. Will, V. Paramonov, D. Richter
Format: Article
Language:English
Published: American Physical Society 2012-10-01
Series:Physical Review Special Topics. Accelerators and Beams
Online Access:http://doi.org/10.1103/PhysRevSTAB.15.100701
id doaj-df737196534e49779682554ed03e36d1
record_format Article
spelling doaj-df737196534e49779682554ed03e36d12020-11-25T02:46:55ZengAmerican Physical SocietyPhysical Review Special Topics. Accelerators and Beams1098-44022012-10-01151010070110.1103/PhysRevSTAB.15.100701Experimentally minimized beam emittance from an L-band photoinjectorM. KrasilnikovF. StephanG. AsovaH.-J. GraboschM. GroßL. HakobyanI. IsaevY. IvanisenkoL. JachmannM. KhojoyanG. KlemzW. KöhlerM. MahgoubD. MalyutinM. NozdrinA. OppeltM. OtevrelB. PetrosyanS. RimjaemA. ShapovalovG. VashchenkoS. WeidingerR. WenndorffK. FlöttmannM. HoffmannS. LedererH. SchlarbS. SchreiberI. TemplinI. WillV. ParamonovD. RichterHigh brightness electron sources for linac based free-electron lasers (FELs) are being developed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ). Production of electron bunches with extremely small transverse emittance is the focus of the PITZ scientific program. The photoinjector optimization in 2008–2009 for a bunch charge of 1, 0.5, 0.25, and 0.1 nC resulted in measured emittance values which are beyond the requirements of the European XFEL [S. Rimjaem et al., Nucl. Instrum. Methods Phys. Res., Sect. A 671, 62 (2012)NIMAER0168-900210.1016/j.nima.2011.12.101]. Several essential modifications were commissioned in 2010–2011 at PITZ, resulting in further improvement of the photoinjector performance. Significant improvement of the rf gun phase stability is a major contribution in the reduction of the measured transverse emittance. The old TESLA prototype booster was replaced by a new cut disk structure cavity. This allows acceleration of the electron beam to higher energies and supports much higher flexibility for stable booster operation as well as for longer rf pulses which is of vital importance especially for the emittance optimization of low charge bunches. The transverse phase space of the electron beam was optimized at PITZ for bunch charges in the range between 0.02 and 2 nC, where the quality of the beam measurements was preserved by utilizing long pulse train operation. The experimental optimization yielded worldwide unprecedented low normalized emittance beams in the whole charge range studied.http://doi.org/10.1103/PhysRevSTAB.15.100701
collection DOAJ
language English
format Article
sources DOAJ
author M. Krasilnikov
F. Stephan
G. Asova
H.-J. Grabosch
M. Groß
L. Hakobyan
I. Isaev
Y. Ivanisenko
L. Jachmann
M. Khojoyan
G. Klemz
W. Köhler
M. Mahgoub
D. Malyutin
M. Nozdrin
A. Oppelt
M. Otevrel
B. Petrosyan
S. Rimjaem
A. Shapovalov
G. Vashchenko
S. Weidinger
R. Wenndorff
K. Flöttmann
M. Hoffmann
S. Lederer
H. Schlarb
S. Schreiber
I. Templin
I. Will
V. Paramonov
D. Richter
spellingShingle M. Krasilnikov
F. Stephan
G. Asova
H.-J. Grabosch
M. Groß
L. Hakobyan
I. Isaev
Y. Ivanisenko
L. Jachmann
M. Khojoyan
G. Klemz
W. Köhler
M. Mahgoub
D. Malyutin
M. Nozdrin
A. Oppelt
M. Otevrel
B. Petrosyan
S. Rimjaem
A. Shapovalov
G. Vashchenko
S. Weidinger
R. Wenndorff
K. Flöttmann
M. Hoffmann
S. Lederer
H. Schlarb
S. Schreiber
I. Templin
I. Will
V. Paramonov
D. Richter
Experimentally minimized beam emittance from an L-band photoinjector
Physical Review Special Topics. Accelerators and Beams
author_facet M. Krasilnikov
F. Stephan
G. Asova
H.-J. Grabosch
M. Groß
L. Hakobyan
I. Isaev
Y. Ivanisenko
L. Jachmann
M. Khojoyan
G. Klemz
W. Köhler
M. Mahgoub
D. Malyutin
M. Nozdrin
A. Oppelt
M. Otevrel
B. Petrosyan
S. Rimjaem
A. Shapovalov
G. Vashchenko
S. Weidinger
R. Wenndorff
K. Flöttmann
M. Hoffmann
S. Lederer
H. Schlarb
S. Schreiber
I. Templin
I. Will
V. Paramonov
D. Richter
author_sort M. Krasilnikov
title Experimentally minimized beam emittance from an L-band photoinjector
title_short Experimentally minimized beam emittance from an L-band photoinjector
title_full Experimentally minimized beam emittance from an L-band photoinjector
title_fullStr Experimentally minimized beam emittance from an L-band photoinjector
title_full_unstemmed Experimentally minimized beam emittance from an L-band photoinjector
title_sort experimentally minimized beam emittance from an l-band photoinjector
publisher American Physical Society
series Physical Review Special Topics. Accelerators and Beams
issn 1098-4402
publishDate 2012-10-01
description High brightness electron sources for linac based free-electron lasers (FELs) are being developed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ). Production of electron bunches with extremely small transverse emittance is the focus of the PITZ scientific program. The photoinjector optimization in 2008–2009 for a bunch charge of 1, 0.5, 0.25, and 0.1 nC resulted in measured emittance values which are beyond the requirements of the European XFEL [S. Rimjaem et al., Nucl. Instrum. Methods Phys. Res., Sect. A 671, 62 (2012)NIMAER0168-900210.1016/j.nima.2011.12.101]. Several essential modifications were commissioned in 2010–2011 at PITZ, resulting in further improvement of the photoinjector performance. Significant improvement of the rf gun phase stability is a major contribution in the reduction of the measured transverse emittance. The old TESLA prototype booster was replaced by a new cut disk structure cavity. This allows acceleration of the electron beam to higher energies and supports much higher flexibility for stable booster operation as well as for longer rf pulses which is of vital importance especially for the emittance optimization of low charge bunches. The transverse phase space of the electron beam was optimized at PITZ for bunch charges in the range between 0.02 and 2 nC, where the quality of the beam measurements was preserved by utilizing long pulse train operation. The experimental optimization yielded worldwide unprecedented low normalized emittance beams in the whole charge range studied.
url http://doi.org/10.1103/PhysRevSTAB.15.100701
work_keys_str_mv AT mkrasilnikov experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT fstephan experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT gasova experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT hjgrabosch experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT mgroß experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT lhakobyan experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT iisaev experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT yivanisenko experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT ljachmann experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT mkhojoyan experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT gklemz experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT wkohler experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT mmahgoub experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT dmalyutin experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT mnozdrin experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT aoppelt experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT motevrel experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT bpetrosyan experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT srimjaem experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT ashapovalov experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT gvashchenko experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT sweidinger experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT rwenndorff experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT kflottmann experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT mhoffmann experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT slederer experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT hschlarb experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT sschreiber experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT itemplin experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT iwill experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT vparamonov experimentallyminimizedbeamemittancefromanlbandphotoinjector
AT drichter experimentallyminimizedbeamemittancefromanlbandphotoinjector
_version_ 1724755818811752448