Pendekatan Machine Learning yang Efisien untuk Prediksi Kanker Payudara

Breast Cancer is the most common cancer found in women and the death rate is still in second place among other cancers. The high accuracy of the machine learning approach that has been proposed by related studies is often achieved. However, without efficient pre-processing, the model of Breast Cance...

Full description

Bibliographic Details
Main Authors: Azminuddin I. S. Azis, Irma Surya Kumala Idris, Budy Santoso, Yasin Aril Mustofa
Format: Article
Language:Indonesian
Published: Ikatan Ahli Indormatika Indonesia 2019-12-01
Series:Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Subjects:
Online Access:http://jurnal.iaii.or.id/index.php/RESTI/article/view/1347
id doaj-df5f34ee92e941e0bd86c623210aef00
record_format Article
spelling doaj-df5f34ee92e941e0bd86c623210aef002020-11-25T03:01:00ZindIkatan Ahli Indormatika IndonesiaJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)2580-07602019-12-013345846910.29207/resti.v3i3.13471347Pendekatan Machine Learning yang Efisien untuk Prediksi Kanker PayudaraAzminuddin I. S. Azis0Irma Surya Kumala Idris1Budy Santoso2Yasin Aril Mustofa3Universitas Ichsan GorontaloUniversitas Ichsan GorontaloUniversitas Ichsan GorontaloUniversitas Ichsan GorontaloBreast Cancer is the most common cancer found in women and the death rate is still in second place among other cancers. The high accuracy of the machine learning approach that has been proposed by related studies is often achieved. However, without efficient pre-processing, the model of Breast Cancer prediction that was proposed is still in question. Therefore, this research objective to improve the accuracy of machine learning methods through pre-processing: Missing Value Replacement, Data Transformation, Smoothing Noisy Data, Feature Selection / Attribute Weighting, Data Validation, and Unbalanced Class Reduction which is more efficient for Breast Cancer prediction. The results of this study propose several approaches: C4.5 - Z-Score - Genetic Algorithm for Breast Cancer Dataset with 77,27% accuracy, 7-Nearest Neighbor - Min-Max Normalization - Particle Swarm Optimization for Wisconsin Breast Cancer Dataset - Original with 97,85% accuracy, Artificial Neural Network - Z-Score - Forward Selection for Wisconsin Breast Cancer Dataset - Diagnostics with 98,24% accuracy, and 11-Nearest Neighbor - Min-Max Normalization - Particle Swarm Optimization for Wisconsin Breast Cancer Dataset - Prognostic with 83,33% accuracy. The performance of these approaches is better than standard/normal machine learning methods and the proposed methods by the best of previous related studies.http://jurnal.iaii.or.id/index.php/RESTI/article/view/1347machine learningbreast cancer predictionmissing value replacementfeature selectionunbalanced class
collection DOAJ
language Indonesian
format Article
sources DOAJ
author Azminuddin I. S. Azis
Irma Surya Kumala Idris
Budy Santoso
Yasin Aril Mustofa
spellingShingle Azminuddin I. S. Azis
Irma Surya Kumala Idris
Budy Santoso
Yasin Aril Mustofa
Pendekatan Machine Learning yang Efisien untuk Prediksi Kanker Payudara
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
machine learning
breast cancer prediction
missing value replacement
feature selection
unbalanced class
author_facet Azminuddin I. S. Azis
Irma Surya Kumala Idris
Budy Santoso
Yasin Aril Mustofa
author_sort Azminuddin I. S. Azis
title Pendekatan Machine Learning yang Efisien untuk Prediksi Kanker Payudara
title_short Pendekatan Machine Learning yang Efisien untuk Prediksi Kanker Payudara
title_full Pendekatan Machine Learning yang Efisien untuk Prediksi Kanker Payudara
title_fullStr Pendekatan Machine Learning yang Efisien untuk Prediksi Kanker Payudara
title_full_unstemmed Pendekatan Machine Learning yang Efisien untuk Prediksi Kanker Payudara
title_sort pendekatan machine learning yang efisien untuk prediksi kanker payudara
publisher Ikatan Ahli Indormatika Indonesia
series Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
issn 2580-0760
publishDate 2019-12-01
description Breast Cancer is the most common cancer found in women and the death rate is still in second place among other cancers. The high accuracy of the machine learning approach that has been proposed by related studies is often achieved. However, without efficient pre-processing, the model of Breast Cancer prediction that was proposed is still in question. Therefore, this research objective to improve the accuracy of machine learning methods through pre-processing: Missing Value Replacement, Data Transformation, Smoothing Noisy Data, Feature Selection / Attribute Weighting, Data Validation, and Unbalanced Class Reduction which is more efficient for Breast Cancer prediction. The results of this study propose several approaches: C4.5 - Z-Score - Genetic Algorithm for Breast Cancer Dataset with 77,27% accuracy, 7-Nearest Neighbor - Min-Max Normalization - Particle Swarm Optimization for Wisconsin Breast Cancer Dataset - Original with 97,85% accuracy, Artificial Neural Network - Z-Score - Forward Selection for Wisconsin Breast Cancer Dataset - Diagnostics with 98,24% accuracy, and 11-Nearest Neighbor - Min-Max Normalization - Particle Swarm Optimization for Wisconsin Breast Cancer Dataset - Prognostic with 83,33% accuracy. The performance of these approaches is better than standard/normal machine learning methods and the proposed methods by the best of previous related studies.
topic machine learning
breast cancer prediction
missing value replacement
feature selection
unbalanced class
url http://jurnal.iaii.or.id/index.php/RESTI/article/view/1347
work_keys_str_mv AT azminuddinisazis pendekatanmachinelearningyangefisienuntukprediksikankerpayudara
AT irmasuryakumalaidris pendekatanmachinelearningyangefisienuntukprediksikankerpayudara
AT budysantoso pendekatanmachinelearningyangefisienuntukprediksikankerpayudara
AT yasinarilmustofa pendekatanmachinelearningyangefisienuntukprediksikankerpayudara
_version_ 1724695458705571840