Summary: | With the propagation of cyberbullying in social networks as a trending subject, cyberbullying detection has become a social problem that researchers are concerned about. Developing intelligent models and systems helps detect cyberbullying automatically. This work focuses on text-based cyberbullying detection because it is the commonly used information carrier in social networks and is the widely used feature in this regard studies. Motivated by the documented success of neural networks, we propose a complete model combining the bidirectional gated recurrent unit (Bi-GRU) and the self-attention mechanism. In detail, we introduce the design of a GRU cell and Bi-GRU’s advantage for learning the underlying relationships between words from both directions. Besides, we present the design of the self-attention mechanism and the benefit of this joining for achieving a greater performance of cyberbullying classification tasks. The proposed model could address the limitation of the vanishing and exploding gradient problems. We avoid using oversampling or downsampling on experimental data which could result in the overestimation of evaluation. We conduct a comparative assessment on two commonly used datasets, and the results show that our proposed method outperformed baselines in all evaluation metrics.
|