Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media
<p>Abstract</p> <p>Background</p> <p>Accurate measurements of the optical properties of biological tissue in the ultraviolet A and short visible wavelengths are needed to achieve a quantitative understanding of novel optical diagnostic devices. Currently, there is minim...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2006-08-01
|
Series: | BioMedical Engineering OnLine |
Online Access: | http://www.biomedical-engineering-online.com/content/5/1/49 |
id |
doaj-df0e5d45bdaa4d679ae49e45566e86fc |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Matchette L Stephanie Agrawal Anant Sharma Divyesh Pfefer T Joshua |
spellingShingle |
Matchette L Stephanie Agrawal Anant Sharma Divyesh Pfefer T Joshua Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media BioMedical Engineering OnLine |
author_facet |
Matchette L Stephanie Agrawal Anant Sharma Divyesh Pfefer T Joshua |
author_sort |
Matchette L Stephanie |
title |
Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media |
title_short |
Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media |
title_full |
Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media |
title_fullStr |
Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media |
title_full_unstemmed |
Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media |
title_sort |
evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media |
publisher |
BMC |
series |
BioMedical Engineering OnLine |
issn |
1475-925X |
publishDate |
2006-08-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Accurate measurements of the optical properties of biological tissue in the ultraviolet A and short visible wavelengths are needed to achieve a quantitative understanding of novel optical diagnostic devices. Currently, there is minimal information on optical property measurement approaches that are appropriate for <it>in vivo </it>measurements in highly absorbing and scattering tissues. We describe a novel fiberoptic-based reflectance system for measurement of optical properties in highly attenuating turbid media and provide an extensive <it>in vitro </it>evaluation of its accuracy. The influence of collecting reflectance at the illumination fiber on estimation accuracy is also investigated.</p> <p>Methods</p> <p>A neural network algorithm and reflectance distributions from Monte Carlo simulations were used to generate predictive models based on the two geometries. Absolute measurements of diffuse reflectance were enabled through calibration of the reflectance system. Spatially-resolved reflectance distributions were measured in tissue phantoms at 405 nm for absorption coefficients (μ<sub>a</sub>) from 1 to 25 cm<sup>-1 </sup>and reduced scattering coefficients (<m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math>) from 5 to 25 cm<sup>-1</sup>. These data and predictive models were used to estimate the optical properties of tissue-simulating phantoms.</p> <p>Results</p> <p>By comparing predicted and known optical properties, the average errors for μ<sub>a </sub>and <m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math> were found to be 3.0% and 4.6%, respectively, for a linear probe approach. When bifurcated probe data was included and samples with μ<sub>a </sub>values less than 5 cm<sup>-1 </sup>were excluded, predictive errors for μ<sub>a </sub>and <m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math> were further reduced to 1.8% and 3.5%.</p> <p>Conclusion</p> <p>Improvements in system design have led to significant reductions in optical property estimation error. While the incorporation of a bifurcated illumination fiber shows promise for improving the accuracy of <m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math> estimates, further study of this approach is needed to elucidate the source of discrepancies between measurements and simulation results at low μ<sub>a </sub>values.</p> |
url |
http://www.biomedical-engineering-online.com/content/5/1/49 |
work_keys_str_mv |
AT matchettelstephanie evaluationofafiberopticbasedsystemformeasurementofopticalpropertiesinhighlyattenuatingturbidmedia AT agrawalanant evaluationofafiberopticbasedsystemformeasurementofopticalpropertiesinhighlyattenuatingturbidmedia AT sharmadivyesh evaluationofafiberopticbasedsystemformeasurementofopticalpropertiesinhighlyattenuatingturbidmedia AT pfefertjoshua evaluationofafiberopticbasedsystemformeasurementofopticalpropertiesinhighlyattenuatingturbidmedia |
_version_ |
1725928416554778624 |
spelling |
doaj-df0e5d45bdaa4d679ae49e45566e86fc2020-11-24T21:40:03ZengBMCBioMedical Engineering OnLine1475-925X2006-08-01514910.1186/1475-925X-5-49Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid mediaMatchette L StephanieAgrawal AnantSharma DivyeshPfefer T Joshua<p>Abstract</p> <p>Background</p> <p>Accurate measurements of the optical properties of biological tissue in the ultraviolet A and short visible wavelengths are needed to achieve a quantitative understanding of novel optical diagnostic devices. Currently, there is minimal information on optical property measurement approaches that are appropriate for <it>in vivo </it>measurements in highly absorbing and scattering tissues. We describe a novel fiberoptic-based reflectance system for measurement of optical properties in highly attenuating turbid media and provide an extensive <it>in vitro </it>evaluation of its accuracy. The influence of collecting reflectance at the illumination fiber on estimation accuracy is also investigated.</p> <p>Methods</p> <p>A neural network algorithm and reflectance distributions from Monte Carlo simulations were used to generate predictive models based on the two geometries. Absolute measurements of diffuse reflectance were enabled through calibration of the reflectance system. Spatially-resolved reflectance distributions were measured in tissue phantoms at 405 nm for absorption coefficients (μ<sub>a</sub>) from 1 to 25 cm<sup>-1 </sup>and reduced scattering coefficients (<m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math>) from 5 to 25 cm<sup>-1</sup>. These data and predictive models were used to estimate the optical properties of tissue-simulating phantoms.</p> <p>Results</p> <p>By comparing predicted and known optical properties, the average errors for μ<sub>a </sub>and <m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math> were found to be 3.0% and 4.6%, respectively, for a linear probe approach. When bifurcated probe data was included and samples with μ<sub>a </sub>values less than 5 cm<sup>-1 </sup>were excluded, predictive errors for μ<sub>a </sub>and <m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math> were further reduced to 1.8% and 3.5%.</p> <p>Conclusion</p> <p>Improvements in system design have led to significant reductions in optical property estimation error. While the incorporation of a bifurcated illumination fiber shows promise for improving the accuracy of <m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math> estimates, further study of this approach is needed to elucidate the source of discrepancies between measurements and simulation results at low μ<sub>a </sub>values.</p> http://www.biomedical-engineering-online.com/content/5/1/49 |