Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media

<p>Abstract</p> <p>Background</p> <p>Accurate measurements of the optical properties of biological tissue in the ultraviolet A and short visible wavelengths are needed to achieve a quantitative understanding of novel optical diagnostic devices. Currently, there is minim...

Full description

Bibliographic Details
Main Authors: Matchette L Stephanie, Agrawal Anant, Sharma Divyesh, Pfefer T Joshua
Format: Article
Language:English
Published: BMC 2006-08-01
Series:BioMedical Engineering OnLine
Online Access:http://www.biomedical-engineering-online.com/content/5/1/49
id doaj-df0e5d45bdaa4d679ae49e45566e86fc
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Matchette L Stephanie
Agrawal Anant
Sharma Divyesh
Pfefer T Joshua
spellingShingle Matchette L Stephanie
Agrawal Anant
Sharma Divyesh
Pfefer T Joshua
Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media
BioMedical Engineering OnLine
author_facet Matchette L Stephanie
Agrawal Anant
Sharma Divyesh
Pfefer T Joshua
author_sort Matchette L Stephanie
title Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media
title_short Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media
title_full Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media
title_fullStr Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media
title_full_unstemmed Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media
title_sort evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media
publisher BMC
series BioMedical Engineering OnLine
issn 1475-925X
publishDate 2006-08-01
description <p>Abstract</p> <p>Background</p> <p>Accurate measurements of the optical properties of biological tissue in the ultraviolet A and short visible wavelengths are needed to achieve a quantitative understanding of novel optical diagnostic devices. Currently, there is minimal information on optical property measurement approaches that are appropriate for <it>in vivo </it>measurements in highly absorbing and scattering tissues. We describe a novel fiberoptic-based reflectance system for measurement of optical properties in highly attenuating turbid media and provide an extensive <it>in vitro </it>evaluation of its accuracy. The influence of collecting reflectance at the illumination fiber on estimation accuracy is also investigated.</p> <p>Methods</p> <p>A neural network algorithm and reflectance distributions from Monte Carlo simulations were used to generate predictive models based on the two geometries. Absolute measurements of diffuse reflectance were enabled through calibration of the reflectance system. Spatially-resolved reflectance distributions were measured in tissue phantoms at 405 nm for absorption coefficients (μ<sub>a</sub>) from 1 to 25 cm<sup>-1 </sup>and reduced scattering coefficients (<m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math>) from 5 to 25 cm<sup>-1</sup>. These data and predictive models were used to estimate the optical properties of tissue-simulating phantoms.</p> <p>Results</p> <p>By comparing predicted and known optical properties, the average errors for μ<sub>a </sub>and <m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math> were found to be 3.0% and 4.6%, respectively, for a linear probe approach. When bifurcated probe data was included and samples with μ<sub>a </sub>values less than 5 cm<sup>-1 </sup>were excluded, predictive errors for μ<sub>a </sub>and <m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math> were further reduced to 1.8% and 3.5%.</p> <p>Conclusion</p> <p>Improvements in system design have led to significant reductions in optical property estimation error. While the incorporation of a bifurcated illumination fiber shows promise for improving the accuracy of <m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math> estimates, further study of this approach is needed to elucidate the source of discrepancies between measurements and simulation results at low μ<sub>a </sub>values.</p>
url http://www.biomedical-engineering-online.com/content/5/1/49
work_keys_str_mv AT matchettelstephanie evaluationofafiberopticbasedsystemformeasurementofopticalpropertiesinhighlyattenuatingturbidmedia
AT agrawalanant evaluationofafiberopticbasedsystemformeasurementofopticalpropertiesinhighlyattenuatingturbidmedia
AT sharmadivyesh evaluationofafiberopticbasedsystemformeasurementofopticalpropertiesinhighlyattenuatingturbidmedia
AT pfefertjoshua evaluationofafiberopticbasedsystemformeasurementofopticalpropertiesinhighlyattenuatingturbidmedia
_version_ 1725928416554778624
spelling doaj-df0e5d45bdaa4d679ae49e45566e86fc2020-11-24T21:40:03ZengBMCBioMedical Engineering OnLine1475-925X2006-08-01514910.1186/1475-925X-5-49Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid mediaMatchette L StephanieAgrawal AnantSharma DivyeshPfefer T Joshua<p>Abstract</p> <p>Background</p> <p>Accurate measurements of the optical properties of biological tissue in the ultraviolet A and short visible wavelengths are needed to achieve a quantitative understanding of novel optical diagnostic devices. Currently, there is minimal information on optical property measurement approaches that are appropriate for <it>in vivo </it>measurements in highly absorbing and scattering tissues. We describe a novel fiberoptic-based reflectance system for measurement of optical properties in highly attenuating turbid media and provide an extensive <it>in vitro </it>evaluation of its accuracy. The influence of collecting reflectance at the illumination fiber on estimation accuracy is also investigated.</p> <p>Methods</p> <p>A neural network algorithm and reflectance distributions from Monte Carlo simulations were used to generate predictive models based on the two geometries. Absolute measurements of diffuse reflectance were enabled through calibration of the reflectance system. Spatially-resolved reflectance distributions were measured in tissue phantoms at 405 nm for absorption coefficients (μ<sub>a</sub>) from 1 to 25 cm<sup>-1 </sup>and reduced scattering coefficients (<m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math>) from 5 to 25 cm<sup>-1</sup>. These data and predictive models were used to estimate the optical properties of tissue-simulating phantoms.</p> <p>Results</p> <p>By comparing predicted and known optical properties, the average errors for μ<sub>a </sub>and <m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math> were found to be 3.0% and 4.6%, respectively, for a linear probe approach. When bifurcated probe data was included and samples with μ<sub>a </sub>values less than 5 cm<sup>-1 </sup>were excluded, predictive errors for μ<sub>a </sub>and <m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math> were further reduced to 1.8% and 3.5%.</p> <p>Conclusion</p> <p>Improvements in system design have led to significant reductions in optical property estimation error. While the incorporation of a bifurcated illumination fiber shows promise for improving the accuracy of <m:math name="1475-925X-5-49-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:msup><m:mi>μ</m:mi><m:mo>′</m:mo></m:msup><m:mtext>s</m:mtext></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuaH8oqBgaqbamaaBaaaleaacqqGZbWCaeqaaaaa@3007@</m:annotation></m:semantics></m:math> estimates, further study of this approach is needed to elucidate the source of discrepancies between measurements and simulation results at low μ<sub>a </sub>values.</p> http://www.biomedical-engineering-online.com/content/5/1/49