Summary: | <i>Lespedeza bicolor</i> (LB) is often used in traditional medicine to remove toxins, replenish energy stores, and regulate various symptoms of diabetes. This study aimed to explore the use of LB as a therapeutic to prevent diabetic nephropathy in methylglyoxal (MGO)-treated models in vitro and in vivo. Western blotting, immunostaining, and biochemical assays were used to obtain several experimental readouts in renal epithelial cells (LLC-PK1) and BALB/c mice. These include: production of reactive oxygen species (ROS), formation of advanced glycation end-products (AGEs), expression of receptor for advanced glycation end-products (RAGE), apoptotic cell death, glucose levels, fatty acid and triglyceride levels, expression of pro-inflammatory cytokines IL-1β and TNF-α, glyoxalase 1 (Glo1), and nuclear factor erythroid 2-related factor 2 (Nrf2). Pretreatment with LB significantly reduced MGO-induced cellular apoptosis, intracellular production of ROS, and formation of AGEs to ameliorate renal dysfunction in vitro and in vivo. Interestingly, administering LB in MGO-treated cells and mice upregulated the expression of Nrf2 and Glo1, and downregulated the expression of IL-1β and TNF-α. Moreover, LB reduced MGO-induced AGE accumulation and RAGE expression in the kidneys, which subsequently reduced AGE-RAGE interactions. Overall, LB ameliorates renal cell apoptosis and corrects renal dysfunction in MGO-treated mice. These findings extend our understanding of the pathogenic mechanism of MGO-induced nephrotoxicity and regulation of the AGE/RAGE axis by <i>Lespedeza bicolor</i>.
|