Rank Equalities Related to the Generalized Inverses <i>A</i><sup>‖(<i>B</i><sub>1</sub>,<i>C</i><sub>1</sub>)</sup>, <i>D</i><sup>‖(<i>B</i><sub>2</sub>,<i>C</i><sub>2</sub>)</sup> of Two Matrices <i>A</i> and <i>D</i>

Let <i>A</i> be an <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>&#215;</mo> <mi>n</mi> </mrow> </semantics> </math> </inline-formula> complex matrix. The <in...

Full description

Bibliographic Details
Main Authors: Wenjie Wang, Sanzhang Xu, Julio Benítez
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/4/539
Description
Summary:Let <i>A</i> be an <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>&#215;</mo> <mi>n</mi> </mrow> </semantics> </math> </inline-formula> complex matrix. The <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-inverse <inline-formula> <math display="inline"> <semantics> <msup> <mi>A</mi> <mrow> <mo>∥</mo> <mo>(</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo>)</mo> </mrow> </msup> </semantics> </math> </inline-formula> of <i>A</i> was introduced by Drazin in 2012. For given matrices <i>A</i> and <i>B</i>, several rank equalities related to <inline-formula> <math display="inline"> <semantics> <msup> <mi>A</mi> <mrow> <mo>∥</mo> <mo>(</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </msup> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msup> <mi>B</mi> <mrow> <mo>∥</mo> <mo>(</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </msup> </semantics> </math> </inline-formula> of <i>A</i> and <i>B</i> are presented. As applications, several rank equalities related to the inverse along an element, the Moore-Penrose inverse, the Drazin inverse, the group inverse and the core inverse are obtained.
ISSN:2073-8994