Formation of linear planform chimneys controlled by preferential hydrocarbon leakage and anisotropic stresses in faulted fine-grained sediments, offshore Angola

<p>A new type of gas chimney exhibiting an unconventional linear planform is found. These chimneys are termed <q>Linear Chimneys</q>, which have been observed in 3-D seismic data offshore of Angola. Linear Chimneys occur parallel to adjacent faults, often within preferentially o...

Full description

Bibliographic Details
Main Authors: S. Ho, M. Hovland, J.-P. Blouet, A. Wetzel, P. Imbert, D. Carruthers
Format: Article
Language:English
Published: Copernicus Publications 2018-12-01
Series:Solid Earth
Online Access:https://www.solid-earth.net/9/1437/2018/se-9-1437-2018.pdf
Description
Summary:<p>A new type of gas chimney exhibiting an unconventional linear planform is found. These chimneys are termed <q>Linear Chimneys</q>, which have been observed in 3-D seismic data offshore of Angola. Linear Chimneys occur parallel to adjacent faults, often within preferentially oriented tier-bound fault networks of diagenetic origin (also known as anisotropic polygonal faults, PFs), in salt-deformational domains. These anisotropic PFs are parallel to salt-tectonic-related structures, indicating their submission to horizontal stress perturbations generated by the latter. Only in areas with these anisotropic PF arrangements do chimneys and their associated gas-related structures, such as methane-derived authigenic carbonates and pockmarks, have linear planforms. In areas with the classic <q>isotropic</q> polygonal fault arrangements, the stress state is isotropic, and gas expulsion structures of the same range of sizes exhibit circular geometry. These events indicate that chimney's linear planform is heavily influenced by stress anisotropy around faults. The initiation of polygonal faulting occurred 40 to 80&thinsp;m below the present day seafloor and predates Linear Chimney formation. The majority of Linear Chimneys nucleated in the lower part of the PF tier below the impermeable portion of fault planes and a regional impermeable barrier within the PF tier. The existence of polygonal fault-bound traps in the lower part of the PF tier is evidenced by PF cells filled with gas. These PF gas traps restricted the leakage points of overpressured gas-charged fluids along the lower portion of PFs, hence controlling the nucleation sites of chimneys. Gas expulsion along the lower portion of PFs preconfigured the spatial organisation of chimneys. Anisotropic stress conditions surrounding tectonic and anisotropic polygonal faults coupled with the impermeability of PFs determined the directions of long-term gas migration and linear geometries of chimneys. Methane-related carbonates that precipitated above Linear Chimneys inherited the same linear planform geometry, and both structures record the timing of gas leakage and palaeo-stress state; thus, they can be used as a tool to reconstruct orientations of stress in sedimentary successions. This study demonstrates that overpressure hydrocarbon migration via hydrofracturing may be energetically more favourable than migration along pre-existing faults.</p>
ISSN:1869-9510
1869-9529