Evaluation of Osmotic Dehydration Process in Plant Tissue with Low-Field Magnetic Resonance Imaging Enhanced with Paramagnetic Ions
A novel, non-invasive low-field Magnetic Resonance Imaging (MRI) technique for studying the osmotic dehydration process in fruits and vegetables is proposed. A saturated solution of paramagnetic salt is used as both the osmotic substance and the contrast agent for MRI. Using courgette as an example,...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Processes |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-9717/8/8/887 |
Summary: | A novel, non-invasive low-field Magnetic Resonance Imaging (MRI) technique for studying the osmotic dehydration process in fruits and vegetables is proposed. A saturated solution of paramagnetic salt is used as both the osmotic substance and the contrast agent for MRI. Using courgette as an example, it is demonstrated that the results obtained by the new method are consistent with the standard mass transport analysis, but additional information about the spatial distribution of osmotic substance within the sample and its evolution in time is provided. The MRI method is much more efficient in terms of experiment time and the amount of biological material needed. Possible extensions of the technique to improve its accuracy are discussed. |
---|---|
ISSN: | 2227-9717 |