Self-Organization, Entropy Generation Rate, and Boundary Defects: A Control Volume Approach
Self-organization that leads to the discontinuous emergence of optimized new patterns is related to entropy generation and the export of entropy. Compared to the original pattern that the new, self-organized pattern replaces, the new features could involve an abrupt change in the pattern-volume. The...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/23/8/1092 |
id |
doaj-de9459479fa74af58f25ddf58f892a39 |
---|---|
record_format |
Article |
spelling |
doaj-de9459479fa74af58f25ddf58f892a392021-08-26T13:44:26ZengMDPI AGEntropy1099-43002021-08-01231092109210.3390/e23081092Self-Organization, Entropy Generation Rate, and Boundary Defects: A Control Volume ApproachJainagesh A. Sekhar0MHI Inc., Cincinnati, OH 45215, USASelf-organization that leads to the discontinuous emergence of optimized new patterns is related to entropy generation and the export of entropy. Compared to the original pattern that the new, self-organized pattern replaces, the new features could involve an abrupt change in the pattern-volume. There is no clear principle of pathway selection for self-organization that is known for triggering a particular new self-organization pattern. The new pattern displays different types of boundary-defects necessary for stabilizing the new order. Boundary-defects can contain high entropy regions of concentrated chemical species. On the other hand, the reorganization (or refinement) of an established pattern is a more kinetically tractable process, where the entropy generation rate varies continuously with the imposed variables that enable and sustain the pattern features. The maximum entropy production rate (MEPR) principle is one possibility that may have predictive capability for self-organization. The scale of shapes that form or evolve during self-organization and reorganization are influenced by the export of specific defects from the control volume of study. The control volume (CV) approach must include the texture patterns to be located inside the CV for the MEPR analysis to be applicable. These hypotheses were examined for patterns that are well-characterized for solidification and wear processes. We tested the governing equations for bifurcations (the onset of new patterns) and for reorganization (the fine tuning of existing patterns) with published experimental data, across the range of solidification morphologies and nonequilibrium phases, for metallic glass and featureless crystalline solids. The self-assembling features of surface-texture patterns for friction and wear conditions were also modeled with the entropy generation (MEPR) principle, including defect production (wear debris). We found that surface texture and entropy generation in the control volume could be predictive for self-organization. The main results of this study provide support to the hypothesis that self-organized patterns are a consequence of the maximum entropy production rate per volume principle. Patterns at any scale optimize a certain outcome and have utility. We discuss some similarities between the self-organization behavior of both inanimate and living systems, with ideas regarding the optimizing features of self-organized pattern features that impact functionality, beauty, and consciousness.https://www.mdpi.com/1099-4300/23/8/1092self-organizationmaximum entropy generation rate per unit volumedefectssolidification patternsfriction and wear texturespatterns |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jainagesh A. Sekhar |
spellingShingle |
Jainagesh A. Sekhar Self-Organization, Entropy Generation Rate, and Boundary Defects: A Control Volume Approach Entropy self-organization maximum entropy generation rate per unit volume defects solidification patterns friction and wear textures patterns |
author_facet |
Jainagesh A. Sekhar |
author_sort |
Jainagesh A. Sekhar |
title |
Self-Organization, Entropy Generation Rate, and Boundary Defects: A Control Volume Approach |
title_short |
Self-Organization, Entropy Generation Rate, and Boundary Defects: A Control Volume Approach |
title_full |
Self-Organization, Entropy Generation Rate, and Boundary Defects: A Control Volume Approach |
title_fullStr |
Self-Organization, Entropy Generation Rate, and Boundary Defects: A Control Volume Approach |
title_full_unstemmed |
Self-Organization, Entropy Generation Rate, and Boundary Defects: A Control Volume Approach |
title_sort |
self-organization, entropy generation rate, and boundary defects: a control volume approach |
publisher |
MDPI AG |
series |
Entropy |
issn |
1099-4300 |
publishDate |
2021-08-01 |
description |
Self-organization that leads to the discontinuous emergence of optimized new patterns is related to entropy generation and the export of entropy. Compared to the original pattern that the new, self-organized pattern replaces, the new features could involve an abrupt change in the pattern-volume. There is no clear principle of pathway selection for self-organization that is known for triggering a particular new self-organization pattern. The new pattern displays different types of boundary-defects necessary for stabilizing the new order. Boundary-defects can contain high entropy regions of concentrated chemical species. On the other hand, the reorganization (or refinement) of an established pattern is a more kinetically tractable process, where the entropy generation rate varies continuously with the imposed variables that enable and sustain the pattern features. The maximum entropy production rate (MEPR) principle is one possibility that may have predictive capability for self-organization. The scale of shapes that form or evolve during self-organization and reorganization are influenced by the export of specific defects from the control volume of study. The control volume (CV) approach must include the texture patterns to be located inside the CV for the MEPR analysis to be applicable. These hypotheses were examined for patterns that are well-characterized for solidification and wear processes. We tested the governing equations for bifurcations (the onset of new patterns) and for reorganization (the fine tuning of existing patterns) with published experimental data, across the range of solidification morphologies and nonequilibrium phases, for metallic glass and featureless crystalline solids. The self-assembling features of surface-texture patterns for friction and wear conditions were also modeled with the entropy generation (MEPR) principle, including defect production (wear debris). We found that surface texture and entropy generation in the control volume could be predictive for self-organization. The main results of this study provide support to the hypothesis that self-organized patterns are a consequence of the maximum entropy production rate per volume principle. Patterns at any scale optimize a certain outcome and have utility. We discuss some similarities between the self-organization behavior of both inanimate and living systems, with ideas regarding the optimizing features of self-organized pattern features that impact functionality, beauty, and consciousness. |
topic |
self-organization maximum entropy generation rate per unit volume defects solidification patterns friction and wear textures patterns |
url |
https://www.mdpi.com/1099-4300/23/8/1092 |
work_keys_str_mv |
AT jainageshasekhar selforganizationentropygenerationrateandboundarydefectsacontrolvolumeapproach |
_version_ |
1721193648871178240 |