Prediction of monthly electric energy consumption using pattern-based fuzzy nearest neighbour regression

Electricity demand forecasting is of important role in power system planning and operation. In this work, fuzzy nearest neighbour regression has been utilised to estimate monthly electricity demands. The forecasting model was based on the pre-processed energy consumption time series, where input and...

Full description

Bibliographic Details
Main Authors: Pełka Paweł, Dudek Grzegorz
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:ITM Web of Conferences
Online Access:https://doi.org/10.1051/itmconf/20171502005
Description
Summary:Electricity demand forecasting is of important role in power system planning and operation. In this work, fuzzy nearest neighbour regression has been utilised to estimate monthly electricity demands. The forecasting model was based on the pre-processed energy consumption time series, where input and output variables were defined as patterns representing unified fragments of the time series. Relationships between inputs and outputs, which were simplified due to patterns, were modelled using nonparametric regression with weighting function defined as a fuzzy membership of learning points to the neighbourhood of a query point. In an experimental part of the work the model was evaluated using real-world data. The results are encouraging and show high performances of the model and its competitiveness compared to other forecasting models.
ISSN:2271-2097