Performance Simulation Comparison for Parabolic Trough Solar Collectors in China
Parabolic trough systems are the most used concentrated solar power technology. The operating performance and optical efficiency of the parabolic trough solar collectors (PTCs) are different in different regions and different seasons. To determine the optimum design and operation of the parabolic tr...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | International Journal of Photoenergy |
Online Access: | http://dx.doi.org/10.1155/2016/9260943 |
Summary: | Parabolic trough systems are the most used concentrated solar power technology. The operating performance and optical efficiency of the parabolic trough solar collectors (PTCs) are different in different regions and different seasons. To determine the optimum design and operation of the parabolic trough solar collector throughout the year, an accurate estimation of the daily performance is needed. In this study, a mathematical model for the optical efficiency of the parabolic trough solar collector was established and three typical regions of solar thermal utilization in China were selected. The performance characteristics of cosine effect, shadowing effect, end loss effect, and optical efficiency were calculated and simulated during a whole year in these three areas by using the mathematical model. The simulation results show that the optical efficiency of PTCs changes from 0.4 to 0.8 in a whole year. The highest optical efficiency of PTCs is in June and the lowest is in December. The optical efficiency of PTCs is mainly influenced by the solar incidence angle. The model is validated by comparing the test results in parabolic trough power plant, with relative error range of 1% to about 5%. |
---|---|
ISSN: | 1110-662X 1687-529X |