Stereocomplexation of Poly(Lactic acid) and Chemical Crosslinking of Ethylene Glycol Dimethacrylate (EGDMA) Double-Crosslinked Temperature/pH Dual Responsive Hydrogels

Physical crosslinking and chemical crosslinking were used to further improve the mechanical properties and stability of the gel. A temperature/pH dual sensitive and double-crosslinked gel was prepared by the stereo-complex of HEMA-PLLA<sub>20</sub> and HEMA-PDLA<sub>20</sub>...

Full description

Bibliographic Details
Main Authors: Zhidan Wang, Jie Wu, Xiaoyu Shi, Fei Song, Wenli Gao, Shouxin Liu
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/12/10/2204
Description
Summary:Physical crosslinking and chemical crosslinking were used to further improve the mechanical properties and stability of the gel. A temperature/pH dual sensitive and double-crosslinked gel was prepared by the stereo-complex of HEMA-PLLA<sub>20</sub> and HEMA-PDLA<sub>20</sub> as a physical crosslinking agent, ethylene glycol dimethacrylate (EGDMA) as a chemical crosslinking agent, and azodiisobutyronitrile (AIBN) as an initiator for free radical polymerization. This paper focused on the performance comparison of chemical crosslinked gel, a physical crosslinked gel, and a dual crosslinked gel. The water absorption, temperature, and pH sensitivity of the three hydrogels were studied by a scanning electron microscope (SEM) and swelling performance research. We used a thermal analysis system (TGA) and dynamic viscoelastic spectrometer to study thermal properties and mechanical properties of these gels. Lastly, the in vitro drug release behavior of double-crosslinked hydrogel loaded with doxorubicin under different conditions was studied. The results show that the double-crosslinked and temperature/pH dual responsive hydrogels has great mechanical properties and good stability.
ISSN:2073-4360