A Phenomenological Epidemic Model Based On the Spatio-Temporal Evolution of a Gaussian Probability Density Function

A novel phenomenological epidemic model is proposed to characterize the state of infectious diseases and predict their behaviors. This model is given by a new stochastic partial differential equation that is derived from foundations of statistical physics. The analytical solution of this equation de...

Full description

Bibliographic Details
Main Authors: Domingo Benítez, Gustavo Montero, Eduardo Rodríguez, David Greiner, Albert Oliver, Luis González, Rafael Montenegro
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/11/2000
id doaj-de63f0fef5d14914903f611afaf32057
record_format Article
spelling doaj-de63f0fef5d14914903f611afaf320572020-11-25T03:59:15ZengMDPI AGMathematics2227-73902020-11-0182000200010.3390/math8112000A Phenomenological Epidemic Model Based On the Spatio-Temporal Evolution of a Gaussian Probability Density FunctionDomingo Benítez0Gustavo Montero1Eduardo Rodríguez2David Greiner3Albert Oliver4Luis González5Rafael Montenegro6University of Las Palmas de Gran Canaria, SIANI Research Institute, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, SpainUniversity of Las Palmas de Gran Canaria, SIANI Research Institute, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, SpainUniversity of Las Palmas de Gran Canaria, SIANI Research Institute, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, SpainUniversity of Las Palmas de Gran Canaria, SIANI Research Institute, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, SpainUniversity of Las Palmas de Gran Canaria, SIANI Research Institute, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, SpainUniversity of Las Palmas de Gran Canaria, SIANI Research Institute, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, SpainUniversity of Las Palmas de Gran Canaria, SIANI Research Institute, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, SpainA novel phenomenological epidemic model is proposed to characterize the state of infectious diseases and predict their behaviors. This model is given by a new stochastic partial differential equation that is derived from foundations of statistical physics. The analytical solution of this equation describes the spatio-temporal evolution of a Gaussian probability density function. Our proposal can be applied to several epidemic variables such as infected, deaths, or admitted-to-the-Intensive Care Unit (ICU). To measure model performance, we quantify the error of the model fit to real time-series datasets and generate forecasts for all the phases of the COVID-19, Ebola, and Zika epidemics. All parameters and model uncertainties are numerically quantified. The new model is compared with other phenomenological models such as Logistic Grow, Original, and Generalized Richards Growth models. When the models are used to describe epidemic trajectories that register infected individuals, this comparison shows that the median RMSE error and standard deviation of the residuals of the new model fit to the data are lower than the best of these growing models by, on average, 19.6% and 35.7%, respectively. Using three forecasting experiments for the COVID-19 outbreak, the median RMSE error and standard deviation of residuals are improved by the performance of our model, on average by 31.0% and 27.9%, respectively, concerning the best performance of the growth models.https://www.mdpi.com/2227-7390/8/11/2000phenomenological epidemic modelsstochastic epidemic modelsparameter estimationforecastsmodel fitting performance
collection DOAJ
language English
format Article
sources DOAJ
author Domingo Benítez
Gustavo Montero
Eduardo Rodríguez
David Greiner
Albert Oliver
Luis González
Rafael Montenegro
spellingShingle Domingo Benítez
Gustavo Montero
Eduardo Rodríguez
David Greiner
Albert Oliver
Luis González
Rafael Montenegro
A Phenomenological Epidemic Model Based On the Spatio-Temporal Evolution of a Gaussian Probability Density Function
Mathematics
phenomenological epidemic models
stochastic epidemic models
parameter estimation
forecasts
model fitting performance
author_facet Domingo Benítez
Gustavo Montero
Eduardo Rodríguez
David Greiner
Albert Oliver
Luis González
Rafael Montenegro
author_sort Domingo Benítez
title A Phenomenological Epidemic Model Based On the Spatio-Temporal Evolution of a Gaussian Probability Density Function
title_short A Phenomenological Epidemic Model Based On the Spatio-Temporal Evolution of a Gaussian Probability Density Function
title_full A Phenomenological Epidemic Model Based On the Spatio-Temporal Evolution of a Gaussian Probability Density Function
title_fullStr A Phenomenological Epidemic Model Based On the Spatio-Temporal Evolution of a Gaussian Probability Density Function
title_full_unstemmed A Phenomenological Epidemic Model Based On the Spatio-Temporal Evolution of a Gaussian Probability Density Function
title_sort phenomenological epidemic model based on the spatio-temporal evolution of a gaussian probability density function
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-11-01
description A novel phenomenological epidemic model is proposed to characterize the state of infectious diseases and predict their behaviors. This model is given by a new stochastic partial differential equation that is derived from foundations of statistical physics. The analytical solution of this equation describes the spatio-temporal evolution of a Gaussian probability density function. Our proposal can be applied to several epidemic variables such as infected, deaths, or admitted-to-the-Intensive Care Unit (ICU). To measure model performance, we quantify the error of the model fit to real time-series datasets and generate forecasts for all the phases of the COVID-19, Ebola, and Zika epidemics. All parameters and model uncertainties are numerically quantified. The new model is compared with other phenomenological models such as Logistic Grow, Original, and Generalized Richards Growth models. When the models are used to describe epidemic trajectories that register infected individuals, this comparison shows that the median RMSE error and standard deviation of the residuals of the new model fit to the data are lower than the best of these growing models by, on average, 19.6% and 35.7%, respectively. Using three forecasting experiments for the COVID-19 outbreak, the median RMSE error and standard deviation of residuals are improved by the performance of our model, on average by 31.0% and 27.9%, respectively, concerning the best performance of the growth models.
topic phenomenological epidemic models
stochastic epidemic models
parameter estimation
forecasts
model fitting performance
url https://www.mdpi.com/2227-7390/8/11/2000
work_keys_str_mv AT domingobenitez aphenomenologicalepidemicmodelbasedonthespatiotemporalevolutionofagaussianprobabilitydensityfunction
AT gustavomontero aphenomenologicalepidemicmodelbasedonthespatiotemporalevolutionofagaussianprobabilitydensityfunction
AT eduardorodriguez aphenomenologicalepidemicmodelbasedonthespatiotemporalevolutionofagaussianprobabilitydensityfunction
AT davidgreiner aphenomenologicalepidemicmodelbasedonthespatiotemporalevolutionofagaussianprobabilitydensityfunction
AT albertoliver aphenomenologicalepidemicmodelbasedonthespatiotemporalevolutionofagaussianprobabilitydensityfunction
AT luisgonzalez aphenomenologicalepidemicmodelbasedonthespatiotemporalevolutionofagaussianprobabilitydensityfunction
AT rafaelmontenegro aphenomenologicalepidemicmodelbasedonthespatiotemporalevolutionofagaussianprobabilitydensityfunction
AT domingobenitez phenomenologicalepidemicmodelbasedonthespatiotemporalevolutionofagaussianprobabilitydensityfunction
AT gustavomontero phenomenologicalepidemicmodelbasedonthespatiotemporalevolutionofagaussianprobabilitydensityfunction
AT eduardorodriguez phenomenologicalepidemicmodelbasedonthespatiotemporalevolutionofagaussianprobabilitydensityfunction
AT davidgreiner phenomenologicalepidemicmodelbasedonthespatiotemporalevolutionofagaussianprobabilitydensityfunction
AT albertoliver phenomenologicalepidemicmodelbasedonthespatiotemporalevolutionofagaussianprobabilitydensityfunction
AT luisgonzalez phenomenologicalepidemicmodelbasedonthespatiotemporalevolutionofagaussianprobabilitydensityfunction
AT rafaelmontenegro phenomenologicalepidemicmodelbasedonthespatiotemporalevolutionofagaussianprobabilitydensityfunction
_version_ 1724454996727037952