Summary: | This paper proposes to use band selection-based dimensionality reduction (BS-DR) technique in addressing a challenging multi-temporal hyperspectral images change detection (HSI-CD) problem. The aim of this work is to analyze and evaluate in detail the CD performance by selecting the most informative band subset from the original high-dimensional data space. In particular, for cases where ground reference data are available or unavailable, either supervised or unsupervised CD approaches are designed. The following sub-problems in HSI-CD are investigated, including: (1) the estimated number of multi-class changes; (2) the binary CD; (3) the multiple CD; (4) the estimated optimal number of selected bands; and (5) computational efficiency. The main contribution of this paper is to provide for the first time a thorough analysis of the impacts of band selection on the HSI-CD problem, thus to fix the gap in the state-of-the-art techniques either by simply utilizing the full dimensionality of the data or exploring a complex hierarchical change analysis. It is applicable to CD problems in multispectral or PolSAR images when the feature space is expanded for discriminant feature extraction. Two real multi-temporal hyperspectral Hyperion datasets are used to validate the proposed approaches. Quantitative and qualitative experimental results demonstrated that by selecting a subset of the most informative and distinct spectral bands, the proposed approaches offered better CD performance than the state-of-the-art techniques using original full bands, without losing the change representative and discriminable capabilities of a detector.
|