Shape Analysis of the Patellar Bone Surface and Cutting Plane for Knee Replacement Surgery
Geometry of the patella (kneecap) remains poorly understood yet is highly relevant to performing the correct patellar cut to reduce pain and to improve function and satisfaction after knee replacement surgery. Although studies routinely refer to “parallel to the anterior surface” and “the patellar h...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Computational and Mathematical Methods in Medicine |
Online Access: | http://dx.doi.org/10.1155/2018/6490425 |
id |
doaj-de4899687f1140918102046d0b3c25d2 |
---|---|
record_format |
Article |
spelling |
doaj-de4899687f1140918102046d0b3c25d22020-11-24T22:32:15ZengHindawi LimitedComputational and Mathematical Methods in Medicine1748-670X1748-67182018-01-01201810.1155/2018/64904256490425Shape Analysis of the Patellar Bone Surface and Cutting Plane for Knee Replacement SurgeryE. L. Rex0J. Werle1B. C. Burkart2J. R. MacKenzie3K. D. Johnston4C. Anglin5Biomedical Engineering, University of Calgary, Calgary, CanadaMcCaig Institute for Bone and Joint Health, University of Calgary, Calgary, CanadaMcCaig Institute for Bone and Joint Health, University of Calgary, Calgary, CanadaMcCaig Institute for Bone and Joint Health, University of Calgary, Calgary, CanadaMcCaig Institute for Bone and Joint Health, University of Calgary, Calgary, CanadaBiomedical Engineering, University of Calgary, Calgary, CanadaGeometry of the patella (kneecap) remains poorly understood yet is highly relevant to performing the correct patellar cut to reduce pain and to improve function and satisfaction after knee replacement surgery. Although studies routinely refer to “parallel to the anterior surface” and “the patellar horizon,” a quantitative definition of these is lacking and significant variability exists between observers for this irregularly-shaped bone. A 2D-3D shape analysis technique was developed to determine the optimal device configuration for contacting the patellar surface. Axial and sagittal pseudo-X-rays were created from 18 computed tomography (CT) scans of cadaveric knees. Four expert surgeons reviewed three repetitions of the X-rays in randomized order, marking their desired cut plane and their estimate of the anterior surface. These 2D results were related back to the 3D model to create the desired plane. There was considerable variability in perceptions, with intra- and intersurgeon repeatability (standard deviations) ranging from 1.3° to 2.4°. The best configuration of contact points to achieve the desired cutting plane was three pegs centred on the patellar surface, two superior and one inferior, forming a 16 mm equilateral triangle. This configuration achieved predicted cut planes within 1° of the surgeon ranges on all 18 patellae. Implementing this, as was done in a subsequent prototype surgical device, should help improve the success and satisfaction of knee replacement surgery.http://dx.doi.org/10.1155/2018/6490425 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
E. L. Rex J. Werle B. C. Burkart J. R. MacKenzie K. D. Johnston C. Anglin |
spellingShingle |
E. L. Rex J. Werle B. C. Burkart J. R. MacKenzie K. D. Johnston C. Anglin Shape Analysis of the Patellar Bone Surface and Cutting Plane for Knee Replacement Surgery Computational and Mathematical Methods in Medicine |
author_facet |
E. L. Rex J. Werle B. C. Burkart J. R. MacKenzie K. D. Johnston C. Anglin |
author_sort |
E. L. Rex |
title |
Shape Analysis of the Patellar Bone Surface and Cutting Plane for Knee Replacement Surgery |
title_short |
Shape Analysis of the Patellar Bone Surface and Cutting Plane for Knee Replacement Surgery |
title_full |
Shape Analysis of the Patellar Bone Surface and Cutting Plane for Knee Replacement Surgery |
title_fullStr |
Shape Analysis of the Patellar Bone Surface and Cutting Plane for Knee Replacement Surgery |
title_full_unstemmed |
Shape Analysis of the Patellar Bone Surface and Cutting Plane for Knee Replacement Surgery |
title_sort |
shape analysis of the patellar bone surface and cutting plane for knee replacement surgery |
publisher |
Hindawi Limited |
series |
Computational and Mathematical Methods in Medicine |
issn |
1748-670X 1748-6718 |
publishDate |
2018-01-01 |
description |
Geometry of the patella (kneecap) remains poorly understood yet is highly relevant to performing the correct patellar cut to reduce pain and to improve function and satisfaction after knee replacement surgery. Although studies routinely refer to “parallel to the anterior surface” and “the patellar horizon,” a quantitative definition of these is lacking and significant variability exists between observers for this irregularly-shaped bone. A 2D-3D shape analysis technique was developed to determine the optimal device configuration for contacting the patellar surface. Axial and sagittal pseudo-X-rays were created from 18 computed tomography (CT) scans of cadaveric knees. Four expert surgeons reviewed three repetitions of the X-rays in randomized order, marking their desired cut plane and their estimate of the anterior surface. These 2D results were related back to the 3D model to create the desired plane. There was considerable variability in perceptions, with intra- and intersurgeon repeatability (standard deviations) ranging from 1.3° to 2.4°. The best configuration of contact points to achieve the desired cutting plane was three pegs centred on the patellar surface, two superior and one inferior, forming a 16 mm equilateral triangle. This configuration achieved predicted cut planes within 1° of the surgeon ranges on all 18 patellae. Implementing this, as was done in a subsequent prototype surgical device, should help improve the success and satisfaction of knee replacement surgery. |
url |
http://dx.doi.org/10.1155/2018/6490425 |
work_keys_str_mv |
AT elrex shapeanalysisofthepatellarbonesurfaceandcuttingplaneforkneereplacementsurgery AT jwerle shapeanalysisofthepatellarbonesurfaceandcuttingplaneforkneereplacementsurgery AT bcburkart shapeanalysisofthepatellarbonesurfaceandcuttingplaneforkneereplacementsurgery AT jrmackenzie shapeanalysisofthepatellarbonesurfaceandcuttingplaneforkneereplacementsurgery AT kdjohnston shapeanalysisofthepatellarbonesurfaceandcuttingplaneforkneereplacementsurgery AT canglin shapeanalysisofthepatellarbonesurfaceandcuttingplaneforkneereplacementsurgery |
_version_ |
1725734358255403008 |