High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis

Ce-doped ZnO (ZnO:Ce) nanorods have been prepared through a solvothermal method and the effects of Ce-doping on the structural, optical and electronic properties of ZnO rods were studied. ZnO:Ce rods were characterized by XRD, SEM, TEM, XPS, BET, DRS and Raman spectroscopy. 5% Ce-doped ZnO rods with...

Full description

Bibliographic Details
Main Authors: Bilel Chouchene, Tahar Ben Chaabane, Lavinia Balan, Emilien Girot, Kevin Mozet, Ghouti Medjahdi, Raphaël Schneider
Format: Article
Language:English
Published: Beilstein-Institut 2016-09-01
Series:Beilstein Journal of Nanotechnology
Subjects:
Online Access:https://doi.org/10.3762/bjnano.7.125
Description
Summary:Ce-doped ZnO (ZnO:Ce) nanorods have been prepared through a solvothermal method and the effects of Ce-doping on the structural, optical and electronic properties of ZnO rods were studied. ZnO:Ce rods were characterized by XRD, SEM, TEM, XPS, BET, DRS and Raman spectroscopy. 5% Ce-doped ZnO rods with an average length of 130 nm and a diameter of 23 nm exhibit the highest photocatalytic activity for the degradation of the Orange II dye under solar light irradiation. The high photocatalytic activity is ascribed to the substantially enhanced light absorption in the visible region, to the high surface area of ZnO:Ce rods and to the effective electron–hole pair separation originating from Ce doping. The influence of various experimental parameters like the pH, the presence of salts and of organic compounds was investigated and no marked detrimental effect on the photocatalytic activity was observed. Finally, recyclability experiments demonstrate that ZnO:Ce rods are a stable solar-light photocatalyst.
ISSN:2190-4286