Summary: | In this paper, the effects of Ti and Cu addition on inclusion modification and corrosion behavior in the simulated coarse-grained heat-affected zone (CGHAZ) of low-alloy steels were investigated by using in-situ scanning vibration electrode technique (SVET), scanning electron microscope/energy-dispersive X-ray spectroscopy (SEM/EDS), and electrochemical workstation. The results demonstrated that the complex inclusions formed in Cu-bearing steel were (Ti, Al, Mn)-O<sub>x</sub>-MnS, which was similar to that in base steel. Hence, localized corrosion was initiated by the dissolution of MnS. However, the main inclusions in Ti-bearing steels were modified into TiN-Al<sub>2</sub>O<sub>3</sub>/TiN, and the localized corrosion was initiated by the dissolution of high deformation region at inclusion/matrix interface. With increased interface density of inclusions in steels, the corrosion rate increased in the following order: Base steel ≈ Cu-bearing steel < Ti-bearing steel. Owing to the existence of Cu-enriched rust layer, the Cu-bearing steel shows a similar corrosion resistance with base steel.
|