Predicción de la generación interna volumétrica de calor y la capacidad calorífica durante un tratamiento electromagnético del material usando algoritmos híbridos

Este trabajo considera la estimación de la generación interna volumétrica de calor y la capacidad calorífica de una muestra esférica sólida calentada por un campo electromagnético homogéneo variante en el tiempo. Para tal fin, la estrategia numérica soluciona el correspondiente problema inverso. Tre...

Full description

Bibliographic Details
Main Authors: Edgar García-Morantes, Iván Amaya-Contreras, Rodrigo Correa-Cely
Format: Article
Language:English
Published: Universidad Nacional de Colombia 2018-04-01
Series:Ingeniería e Investigación
Subjects:
Online Access:https://revistas.unal.edu.co/index.php/ingeinv/article/view/64225
Description
Summary:Este trabajo considera la estimación de la generación interna volumétrica de calor y la capacidad calorífica de una muestra esférica sólida calentada por un campo electromagnético homogéneo variante en el tiempo. Para tal fin, la estrategia numérica soluciona el correspondiente problema inverso. Tres formas funcionales (lineal, senoidal y exponencial) para el campo electromagnético fueron considerados. Ruido blanco fue agregado al perfil de temperatura teórica (i.e. la solución del problema directo) para simular una situación más realística. La temperatura se pretendió que fuera leída por cuatro sensores. El problema inverso fue solucionado a través de tres diferentes enfoques: usando un optimizador tradicional, usando técnicas modernas y usando una mezcla de ambos. En el primer caso, usamos un algoritmo determinístico tradicional como lo es el de Levenberg-Marquardt (LM). En el segundo, consideramos tres metaheurísticos estocásticos: El Algoritmo de optimización de la espiral (SOA), la Búsqueda en vórtice (VS), y el método de atracción ponderada (WAM). Para el caso final, proponemos híbridos entre el LM y los algoritmos metahehurísticos. Los resultados muestran que LM converge a la solución esperada solo si las condiciones iniciales (IC) están dentro de un rango limitado. Por otra parte, los metaheurísticos convergen en un amplio rango de IC pero muestra baja precisión. Los enfoques híbridos convergen y mejoran la precisión obtenida con los metaheurísticos. La diferencia entre los valores esperados y obtenidos, así como, los errores RMS son reportados y comparados para los tres métodos.
ISSN:0120-5609
2248-8723