Inner ear exosomes and their potential use as biomarkers.

Exosomes are nanovesicles involved in intercellular communications. They are released by a variety of cell types; however, their presence in the inner ear has not been described in the literature. The aims of this study were to determine if exosomes are present in the inner ear and, if present, char...

Full description

Bibliographic Details
Main Authors: Eugene H C Wong, You Yi Dong, Mali Coray, Maurizio Cortada, Soledad Levano, Alexander Schmidt, Yves Brand, Daniel Bodmer, Laurent Muller
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC6014643?pdf=render
Description
Summary:Exosomes are nanovesicles involved in intercellular communications. They are released by a variety of cell types; however, their presence in the inner ear has not been described in the literature. The aims of this study were to determine if exosomes are present in the inner ear and, if present, characterize the changes in their protein content in response to ototoxic stress. In this laboratory investigation, inner ear explants of 5-day-old Wistar rats were cultured and treated with either cisplatin or gentamicin. Hair cell damage was assessed by confocal microscopy. Exosomes were isolated using ExoQuick, serial centrifugation, and mini-column methods. Confirmation and characterization of exosomes was carried out using transmission electron microscopy (TEM), ZetaView, BCA protein analysis, and proteomics. Vesicles with a typical size distribution for exosomes were observed using TEM and ZetaView. Proteomic analysis detected typical exosome markers and markers for the organ of Corti. There was a statistically significant reduction in the exosome protein level and number of particles per cubic centimeter when the samples were exposed to ototoxic stress. Proteomic analysis also detected clear differences in protein expression when ototoxic medications were introduced. Significant changes in the proteomes of the exosomes were previously described in the context of hearing loss and ototoxic treatment. This is the first report describing exosomes derived from the inner ear. These findings may present an opportunity to conduct further studies with the hope of using exosomes as a biomarker to monitor inner ear function in the future.
ISSN:1932-6203