The Alfvén edge in asymmetric reconnection

We show that in the case of magnetic reconnection where the Alfvén velocity is much higher in the plasma on one side of the current sheet than the other, an Alfvén edge is formed. This edge is located between the electron and ion edges on the high Alfvén velocity side of the current sheet. The A...

Full description

Bibliographic Details
Main Authors: A. Vaivads, A. Retinò, Yu. V. Khotyaintsev, M. André
Format: Article
Language:English
Published: Copernicus Publications 2010-06-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/28/1327/2010/angeo-28-1327-2010.pdf
Description
Summary:We show that in the case of magnetic reconnection where the Alfvén velocity is much higher in the plasma on one side of the current sheet than the other, an Alfvén edge is formed. This edge is located between the electron and ion edges on the high Alfvén velocity side of the current sheet. The Alfvén edge forms because the Alfvén wave generated near the X-line will propagate faster than the accelerated ions forming the ion edge. We discuss possible generation mechanism and the polarization of the Alfvén wave in the case when higher Alfvén speed is due to larger magnetic field and smaller plasma density, as in the case of magnetopause reconnection. The Alfvén wave can be generated due to Hall dynamics near the X-line. The Alfvén wave pulse has a unipolar electric field and the parallel current will be such that the outer current on the high magnetic field side is flowing away from the X-line. Understanding Alfvén edges is important for understanding the separatrix regions at the boundaries of reconnection jets. We present an example of Alfvén edge observed by the Cluster spacecraft at the magnetopause.
ISSN:0992-7689
1432-0576