Mechanical Performance Study of Tower Crane Braced Frame Joint with Different Embedded Part Parameters
Embedded part has significant effects on the mechanical performance of tower crane braced frame joint. In this study, a series of experiments with different embedded part parameters are conducted on ultimate bearing capacity, load-displacement relationship, load-strain relationship, failure mode, an...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | Advances in Materials Science and Engineering |
Online Access: | http://dx.doi.org/10.1155/2019/3757259 |
Summary: | Embedded part has significant effects on the mechanical performance of tower crane braced frame joint. In this study, a series of experiments with different embedded part parameters are conducted on ultimate bearing capacity, load-displacement relationship, load-strain relationship, failure mode, and failure mechanism. Finite element models are established by the ABAQUS software and compared with the experiment results to verify rationality and credibility of the models. The present experimental study and finite element model analysis focus on the effects of anchor length, anchor width, and endplate area. The research results show that embedded part is pulled out of braced frame joint without plastic deformation, and local stress distribution of braced frame joint is complex with tension, bending, and shear load. The braced frame joint is severely strained and cracked with ultimate bearing capacity. Influence of embedded part parameters on mechanical performance of braced frame joint decreases in the order of anchor length, endplate area, and anchor width. The embedded part parameters have no influence on failure mode but affect the failure mechanism. Ultimate bearing capacity of embedded part is about four times the cracking bearing capacity, and an effective approach to improve ultimate bearing capacity is increasing anchor length. The research results can provide a better understanding of the sensitivity of mechanical and cracking behaviors of tower crane braced frame joint with different embedded part parameters. |
---|---|
ISSN: | 1687-8434 1687-8442 |