A multicriteria adaptive opportunistic treecast routing protocol for multimedia dissemination in vehicle-to-vehicle telescreen.

This paper presents vehicle-to-vehicle telescreen (VVT) and a multicast scheme to disseminate digital signage multimedia services to vehicular ad hoc networks (VANETs). Multimedia dissemination in VANETs is challenging because of the high packet losses (PLs), delays and longer disconnection times, w...

Full description

Bibliographic Details
Main Authors: Ghulam Sarwar, Sungchang Lee
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC6203257?pdf=render
Description
Summary:This paper presents vehicle-to-vehicle telescreen (VVT) and a multicast scheme to disseminate digital signage multimedia services to vehicular ad hoc networks (VANETs). Multimedia dissemination in VANETs is challenging because of the high packet losses (PLs), delays and longer disconnection times, which degrade the network quality of service (QoS) and user quality of experience (QoE). To reduce the PLs and delays, most existing multimedia multicast schemes in VANETs primarily select routes based on longer route expiration times (RET) or lowest path delays. The RET-based schemes suffer less from PLs when there are fewer active multicastings in the network. When the number of active multicastings increases, delay-based schemes suffer less from PLs comparatively. This tradeoff implies to design an adaptive mechanism by mutually complementing the RET-based and delay-based schemes to reduce PLs and delays. In this paper, we propose a multicriteria adaptive opportunistic treecast routing protocol (MAOTRP), which adapts the route selection mechanism according to active multicastings for efficient multimedia dissemination in VVT. The MAOTRP adjusts the weights of route selection parameters, including RET and delays, by considering their contribution in improving packet delivery ratio. MAOTRP extends a tree-based multicast protocol to provide robustness through alternate routes for link failures to reduce PLs. Through several experimental evaluations, we show that the proposed dissemination scheme improves QoS and QoE, and reduces the average disconnection time.
ISSN:1932-6203