The atypical mammalian ligand Delta-like homologue 1 (Dlk1) can regulate Notch signalling in <it>Drosophila</it>

<p>Abstract</p> <p>Background</p> <p>Mammalian <it>Delta-like 1 </it>(<it>Dlk-1</it>) protein shares homology with Notch ligands but lacks a critical receptor-binding domain. Thus it is unclear whether it is able to interact with Notch <it>...

Full description

Bibliographic Details
Main Authors: Shen Shing-Chuan, Harrison Emma, Takada Shuji, Bray Sarah J, Ferguson-Smith Anne C
Format: Article
Language:English
Published: BMC 2008-01-01
Series:BMC Developmental Biology
Online Access:http://www.biomedcentral.com/1471-213X/8/11
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Mammalian <it>Delta-like 1 </it>(<it>Dlk-1</it>) protein shares homology with Notch ligands but lacks a critical receptor-binding domain. Thus it is unclear whether it is able to interact with Notch <it>in vivo</it>. Unlike mammals, <it>Drosophila </it>have a single Notch receptor allowing a simple <it>in vivo </it>assay for mammalian <it>Dlk1 </it>function.</p> <p>Results</p> <p>Here we show that membrane-bound DLK1 can regulate Notch leading to altered cellular distribution of Notch itself and inhibiting expression of Notch target genes. The resulting adult phenotypes are indicative of reduced Notch function and are enhanced by <it>Notch </it>mutations, confirming that DLK1 action is antagonistic. In addition, cells expressing an alternative <it>Dlk1 </it>isoform exhibit alterations in cell size, functions previously not attributed to Notch suggesting that DLK1 might also act via an alternative target.</p> <p>Conclusion</p> <p>Our results demonstrate that DLK1 can regulate the Notch receptor despite its atypical structure.</p>
ISSN:1471-213X