Summary: | Optical image analysis (OIA) supporting microscopic observation can be applied to improve ore mineral characterization of ore deposits, providing accurate and representative numerical support to petrographic studies, on the polished section scale. In this paper, we present an experimental application of an automated mineral quantification process on polished sections from Zaruma-Portovelo intermediate sulfidation epithermal deposit (Ecuador) using multispectral and color images. Minerals under study were gold, sphalerite, chalcopyrite, galena, pyrite, pyrrhotite, bornite, hematite, chalcocite, pentlandite, covellite, tetrahedrite and native bismuth. The aim of the study was to quantify the ore minerals visible in polished section through OIA and, mainly, to show a detailed description of the methodology implemented. Automated ore identification and determination of geometric parameters predictive of geometallurgical behavior, such as grade, grain size or liberation, have been successfully performed. The results show that automated identification and quantification of ore mineral images are possible through multispectral and color image analysis. Therefore, the optical image analysis method could be a consistent automated mineralogical alternative to carry on detailed ore petrography.
|