Effects of magnetized water application on soil and maize growth indices under different amounts of salt in the water

Application of low quality water for irrigation is compulsive in facing water scarcity. Use of a magnetic field is an approach to overcome this challenge. This study examined the impact of magnetic field technology on improving germination under water of different salinity levels. An experiment was...

Full description

Bibliographic Details
Main Authors: Meysam Abedinpour, Ebrahim Rohani
Format: Article
Language:English
Published: IWA Publishing 2017-09-01
Series:Journal of Water Reuse and Desalination
Subjects:
Online Access:http://jwrd.iwaponline.com/content/7/3/319
Description
Summary:Application of low quality water for irrigation is compulsive in facing water scarcity. Use of a magnetic field is an approach to overcome this challenge. This study examined the impact of magnetic field technology on improving germination under water of different salinity levels. An experiment was conducted to determine the effects of saline water levels, i.e. (S1):0.5, (S2):2, (S3):4 and (S4):6 dS/m combined with magnetized technology (with or without) on maize growth. Thus, magnetic treatment was applied by passing the irrigation water through a 1,500 mT magnetic field at 3 litres per minute (lpm) flow rate. Some emergence indices, such as emergence index, emergence rate index (ERI) and mean emergence time, were used to evaluate the germination of maize seed. As for soil properties after plant harvest, the use of magnetically treated irrigation water reduced soil pH but increased soil electrical conductivity and available N and P. ERI increased from 7.6 to 10.2, 9.1 to 11.1, 10.3 to 13.3, and 11.8 to 13.3 when applying the magnetized field for S1, S2, S3 and S4, respectively. Overall, the growth parameters of maize were improved by using magnetic technology with saline water, while the opposite trend was shown for increasing salinity without magnetic treatment.
ISSN:2220-1319
2408-9370