Driven translocation of a semi-flexible polymer through a nanopore
Abstract We study the driven translocation of a semi-flexible polymer through a nanopore by means of a modified version of the iso-flux tension propagation theory, and extensive molecular dynamics (MD) simulations. We show that in contrast to fully flexible chains, for semi-flexible polymers with a...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2017-08-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-017-07227-3 |
id |
doaj-dd49193fd36245c5a19c5189f4478cb8 |
---|---|
record_format |
Article |
spelling |
doaj-dd49193fd36245c5a19c5189f4478cb82020-12-08T02:36:50ZengNature Publishing GroupScientific Reports2045-23222017-08-01711810.1038/s41598-017-07227-3Driven translocation of a semi-flexible polymer through a nanoporeJalal Sarabadani0Timo Ikonen1Harri Mökkönen2Tapio Ala-Nissila3Spencer Carson4Meni Wanunu5Department of Applied Physics and COMP Center of Excellence, Aalto University School of ScienceVTT Technical Research Centre of Finland Ltd.Department of Applied Physics and COMP Center of Excellence, Aalto University School of ScienceDepartment of Applied Physics and COMP Center of Excellence, Aalto University School of ScienceDepartment of Physics, Northeastern UniversityDepartment of Physics, Northeastern UniversityAbstract We study the driven translocation of a semi-flexible polymer through a nanopore by means of a modified version of the iso-flux tension propagation theory, and extensive molecular dynamics (MD) simulations. We show that in contrast to fully flexible chains, for semi-flexible polymers with a finite persistence length $${\tilde{{\boldsymbol{\ell }}}}_{{\boldsymbol{p}}}$$ ℓ ˜ p the trans side friction must be explicitly taken into account to properly describe the translocation process. In addition, the scaling of the end-to-end distance R N as a function of the chain length N must be known. To this end, we first derive a semi-analytic scaling form for R N, which reproduces the limits of a rod, an ideal chain, and an excluded volume chain in the appropriate limits. We then quantitatively characterize the nature of the trans side friction based on MD simulations. Augmented with these two factors, the theory shows that there are three main regimes for the scaling of the average translocation time τ ∝ N α . In the rod $${\boldsymbol{N}}{\boldsymbol{/}}{\tilde{{\boldsymbol{\ell }}}}_{{\boldsymbol{p}}}{\boldsymbol{\ll }}1$$ N / ℓ ˜ p ≪ 1 , Gaussian $${\boldsymbol{N}}{\boldsymbol{/}}{\tilde{{\boldsymbol{\ell }}}}_{{\boldsymbol{p}}}\sim {\bf{1}}{{\bf{0}}}^{{\bf{2}}}$$ N / ℓ ˜ p ∼ 1 0 2 and excluded volume chain $${\boldsymbol{N}}{\boldsymbol{/}}{\tilde{{\boldsymbol{\kappa }}}}_{{\boldsymbol{p}}}$$ N / κ ˜ p ≫ 10 6 limits, α = 2, 3/2 and 1 + ν, respectively, where ν is the Flory exponent. Our results are in good agreement with available simulations and experimental data.https://doi.org/10.1038/s41598-017-07227-3 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jalal Sarabadani Timo Ikonen Harri Mökkönen Tapio Ala-Nissila Spencer Carson Meni Wanunu |
spellingShingle |
Jalal Sarabadani Timo Ikonen Harri Mökkönen Tapio Ala-Nissila Spencer Carson Meni Wanunu Driven translocation of a semi-flexible polymer through a nanopore Scientific Reports |
author_facet |
Jalal Sarabadani Timo Ikonen Harri Mökkönen Tapio Ala-Nissila Spencer Carson Meni Wanunu |
author_sort |
Jalal Sarabadani |
title |
Driven translocation of a semi-flexible polymer through a nanopore |
title_short |
Driven translocation of a semi-flexible polymer through a nanopore |
title_full |
Driven translocation of a semi-flexible polymer through a nanopore |
title_fullStr |
Driven translocation of a semi-flexible polymer through a nanopore |
title_full_unstemmed |
Driven translocation of a semi-flexible polymer through a nanopore |
title_sort |
driven translocation of a semi-flexible polymer through a nanopore |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2017-08-01 |
description |
Abstract We study the driven translocation of a semi-flexible polymer through a nanopore by means of a modified version of the iso-flux tension propagation theory, and extensive molecular dynamics (MD) simulations. We show that in contrast to fully flexible chains, for semi-flexible polymers with a finite persistence length $${\tilde{{\boldsymbol{\ell }}}}_{{\boldsymbol{p}}}$$ ℓ ˜ p the trans side friction must be explicitly taken into account to properly describe the translocation process. In addition, the scaling of the end-to-end distance R N as a function of the chain length N must be known. To this end, we first derive a semi-analytic scaling form for R N, which reproduces the limits of a rod, an ideal chain, and an excluded volume chain in the appropriate limits. We then quantitatively characterize the nature of the trans side friction based on MD simulations. Augmented with these two factors, the theory shows that there are three main regimes for the scaling of the average translocation time τ ∝ N α . In the rod $${\boldsymbol{N}}{\boldsymbol{/}}{\tilde{{\boldsymbol{\ell }}}}_{{\boldsymbol{p}}}{\boldsymbol{\ll }}1$$ N / ℓ ˜ p ≪ 1 , Gaussian $${\boldsymbol{N}}{\boldsymbol{/}}{\tilde{{\boldsymbol{\ell }}}}_{{\boldsymbol{p}}}\sim {\bf{1}}{{\bf{0}}}^{{\bf{2}}}$$ N / ℓ ˜ p ∼ 1 0 2 and excluded volume chain $${\boldsymbol{N}}{\boldsymbol{/}}{\tilde{{\boldsymbol{\kappa }}}}_{{\boldsymbol{p}}}$$ N / κ ˜ p ≫ 10 6 limits, α = 2, 3/2 and 1 + ν, respectively, where ν is the Flory exponent. Our results are in good agreement with available simulations and experimental data. |
url |
https://doi.org/10.1038/s41598-017-07227-3 |
work_keys_str_mv |
AT jalalsarabadani driventranslocationofasemiflexiblepolymerthroughananopore AT timoikonen driventranslocationofasemiflexiblepolymerthroughananopore AT harrimokkonen driventranslocationofasemiflexiblepolymerthroughananopore AT tapioalanissila driventranslocationofasemiflexiblepolymerthroughananopore AT spencercarson driventranslocationofasemiflexiblepolymerthroughananopore AT meniwanunu driventranslocationofasemiflexiblepolymerthroughananopore |
_version_ |
1724393529620299776 |