A Study of the Effects of Electrode Number and Decoding Algorithm on Online EEG-Based BCI Behavioral Performance
Motor imagery–based brain–computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users' movement related mental intention. The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital ro...
Main Authors: | Jianjun Meng, Bradley J. Edelman, Jaron Olsoe, Gabriel Jacobs, Shuying Zhang, Angeliki Beyko, Bin He |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2018-04-01
|
Series: | Frontiers in Neuroscience |
Subjects: | |
Online Access: | http://journal.frontiersin.org/article/10.3389/fnins.2018.00227/full |
Similar Items
-
In-Ear Electrode EEG for Practical SSVEP BCI
by: Surej Mouli, et al.
Published: (2020-11-01) -
Interfejs mózg-komputer wykorzystujący sygnały EEG
by: Leszek Marek, et al.
Published: (2016-12-01) -
Fully Open-Access Passive Dry Electrodes BIOADC: Open-Electroencephalography (EEG) Re-Invented
by: Gaetano D. Gargiulo, et al.
Published: (2019-02-01) -
Development of a Smart Helmet for Strategical BCI Applications
by: Li-Wei Ko, et al.
Published: (2019-04-01) -
Fabrication and Characterization of Micro-Nano Electrodes for Implantable BCI
by: Ye Xi, et al.
Published: (2019-04-01)