Hyers-Ulam Stability for Linear Differences with Time Dependent and Periodic Coefficients

Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> be a positive integer and let <inline-formula>...

Full description

Bibliographic Details
Main Authors: Constantin Buşe, Donal O’Regan, Olivia Saierli
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/4/512
Description
Summary:Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> be a positive integer and let <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> (with <i>j</i> a non-negative integer) be three given <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">C</mi> </semantics> </math> </inline-formula>-valued and <i>q</i>-periodic sequences. Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>:</mo> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mi>q</mi> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msub> <mo>⋯</mo> <msub> <mi>A</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <msub> <mi>A</mi> <mi>j</mi> </msub> </semantics> </math> </inline-formula> is as is given below. Assuming that the &#8220;monodromy matrix&#8222; <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> has at least one multiple eigenvalue, we prove that the linear scalar recurrence <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mi>n</mi> </msub> <msub> <mi>x</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>n</mi> </msub> <msub> <mi>x</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mi>n</mi> </msub> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>,</mo> <mi>n</mi> <mo>&#8712;</mo> <msub> <mi mathvariant="double-struck">Z</mi> <mo>+</mo> </msub> </mrow> </semantics> </math> </inline-formula> is Hyers-Ulam stable if and only if the spectrum of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> does not intersect the unit circle <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">&#915;</mi> <mo>:</mo> <mo>=</mo> <mo>{</mo> <mi>w</mi> <mo>&#8712;</mo> <mi mathvariant="double-struck">C</mi> <mo>:</mo> <mo>|</mo> <mi>w</mi> <mo>|</mo> <mo>=</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>. Connecting this result with a recently obtained one it follows that the above linear recurrence is Hyers-Ulam stable if and only if the spectrum of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> does not intersect the unit circle.
ISSN:2073-8994