Remotely Sensed Image Classification by Complex Network Eigenvalue and Connected Degree

It is a well-known problem of remotely sensed images classification due to its complexity. This paper proposes a remotely sensed image classification method based on weighted complex network clustering using the traditional K-means clustering algorithm. First, the degree of complex network and clust...

Full description

Bibliographic Details
Main Authors: Mengxi Xu, Chenglin Wei
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Computational and Mathematical Methods in Medicine
Online Access:http://dx.doi.org/10.1155/2012/632703
Description
Summary:It is a well-known problem of remotely sensed images classification due to its complexity. This paper proposes a remotely sensed image classification method based on weighted complex network clustering using the traditional K-means clustering algorithm. First, the degree of complex network and clustering coefficient of weighted feature are used to extract the features of the remote sensing image. Then, the integrated features of remote sensing image are combined to be used as the basis of classification. Finally, K-means algorithm is used to classify the remotely sensed images. The advantage of the proposed classification method lies in obtaining better clustering centers. The experimental results show that the proposed method gives an increase of 8% in accuracy compared with the traditional K-means algorithm and the Iterative Self-Organizing Data Analysis Technique (ISODATA) algorithm.
ISSN:1748-670X
1748-6718