An Object-Based Bidirectional Method for Integrated Building Extraction and Change Detection between Multimodal Point Clouds

Building extraction and change detection are two important tasks in the remote sensing domain. Change detection between airborne laser scanning data and photogrammetric data is vulnerable to dense matching errors, mis-alignment errors and data gaps. This paper proposes an unsupervised object-based m...

Full description

Bibliographic Details
Main Authors: Chenguang Dai, Zhenchao Zhang, Dong Lin
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/10/1680
Description
Summary:Building extraction and change detection are two important tasks in the remote sensing domain. Change detection between airborne laser scanning data and photogrammetric data is vulnerable to dense matching errors, mis-alignment errors and data gaps. This paper proposes an unsupervised object-based method for integrated building extraction and change detection. Firstly, terrain, roofs and vegetation are extracted from the precise laser point cloud, based on “bottom-up” segmentation and clustering. Secondly, change detection is performed in an object-based bidirectional manner: Heightened buildings and demolished buildings are detected by taking the laser scanning data as reference, while newly-built buildings are detected by taking the dense matching data as reference. Experiments on two urban data sets demonstrate its effectiveness and robustness. The object-based change detection achieves a recall rate of 92.31% and a precision rate of 88.89% for the Rotterdam dataset; it achieves a recall rate of 85.71% and a precision rate of 100% for the Enschede dataset. It can not only extract unchanged building footprints, but also assign heightened or demolished labels to the changed buildings.
ISSN:2072-4292