Periodic solutions of arbitrary length in a simple integer iteration

<p/> <p>We prove that all solutions to the nonlinear second-order difference equation in integers <it>y</it><sub><it>n</it>+1</sub> = &#8968;<it>ay</it><sub><it>n</it></sub>&#8969;-<it>y</it><s...

Full description

Bibliographic Details
Main Author: Clark Dean
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2006/035847
id doaj-dcf2aa8342a04a2eb071ad6555e7f220
record_format Article
spelling doaj-dcf2aa8342a04a2eb071ad6555e7f2202020-11-25T00:15:22ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472006-01-0120061035847Periodic solutions of arbitrary length in a simple integer iterationClark Dean<p/> <p>We prove that all solutions to the nonlinear second-order difference equation in integers <it>y</it><sub><it>n</it>+1</sub> = &#8968;<it>ay</it><sub><it>n</it></sub>&#8969;-<it>y</it><sub><it>n</it>-1</sub>, {<it>a</it> &#8712; &#8477;:|<it>a</it>|&lt;2, <it>a</it>&#8800;0,&#177;1}, <it>y</it><sub>0</sub>, <it>y</it><sub>1</sub> &#8712; &#8484;, are periodic. The first-order system representation of this equation is shown to have self-similar and chaotic solutions in the integer plane.</p> http://www.advancesindifferenceequations.com/content/2006/035847
collection DOAJ
language English
format Article
sources DOAJ
author Clark Dean
spellingShingle Clark Dean
Periodic solutions of arbitrary length in a simple integer iteration
Advances in Difference Equations
author_facet Clark Dean
author_sort Clark Dean
title Periodic solutions of arbitrary length in a simple integer iteration
title_short Periodic solutions of arbitrary length in a simple integer iteration
title_full Periodic solutions of arbitrary length in a simple integer iteration
title_fullStr Periodic solutions of arbitrary length in a simple integer iteration
title_full_unstemmed Periodic solutions of arbitrary length in a simple integer iteration
title_sort periodic solutions of arbitrary length in a simple integer iteration
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1839
1687-1847
publishDate 2006-01-01
description <p/> <p>We prove that all solutions to the nonlinear second-order difference equation in integers <it>y</it><sub><it>n</it>+1</sub> = &#8968;<it>ay</it><sub><it>n</it></sub>&#8969;-<it>y</it><sub><it>n</it>-1</sub>, {<it>a</it> &#8712; &#8477;:|<it>a</it>|&lt;2, <it>a</it>&#8800;0,&#177;1}, <it>y</it><sub>0</sub>, <it>y</it><sub>1</sub> &#8712; &#8484;, are periodic. The first-order system representation of this equation is shown to have self-similar and chaotic solutions in the integer plane.</p>
url http://www.advancesindifferenceequations.com/content/2006/035847
work_keys_str_mv AT clarkdean periodicsolutionsofarbitrarylengthinasimpleintegeriteration
_version_ 1725387212107808768