Periodic solutions of arbitrary length in a simple integer iteration
<p/> <p>We prove that all solutions to the nonlinear second-order difference equation in integers <it>y</it><sub><it>n</it>+1</sub> = ⌈<it>ay</it><sub><it>n</it></sub>⌉-<it>y</it><s...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2006-01-01
|
Series: | Advances in Difference Equations |
Online Access: | http://www.advancesindifferenceequations.com/content/2006/035847 |
id |
doaj-dcf2aa8342a04a2eb071ad6555e7f220 |
---|---|
record_format |
Article |
spelling |
doaj-dcf2aa8342a04a2eb071ad6555e7f2202020-11-25T00:15:22ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472006-01-0120061035847Periodic solutions of arbitrary length in a simple integer iterationClark Dean<p/> <p>We prove that all solutions to the nonlinear second-order difference equation in integers <it>y</it><sub><it>n</it>+1</sub> = ⌈<it>ay</it><sub><it>n</it></sub>⌉-<it>y</it><sub><it>n</it>-1</sub>, {<it>a</it> ∈ ℝ:|<it>a</it>|<2, <it>a</it>≠0,±1}, <it>y</it><sub>0</sub>, <it>y</it><sub>1</sub> ∈ ℤ, are periodic. The first-order system representation of this equation is shown to have self-similar and chaotic solutions in the integer plane.</p> http://www.advancesindifferenceequations.com/content/2006/035847 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Clark Dean |
spellingShingle |
Clark Dean Periodic solutions of arbitrary length in a simple integer iteration Advances in Difference Equations |
author_facet |
Clark Dean |
author_sort |
Clark Dean |
title |
Periodic solutions of arbitrary length in a simple integer iteration |
title_short |
Periodic solutions of arbitrary length in a simple integer iteration |
title_full |
Periodic solutions of arbitrary length in a simple integer iteration |
title_fullStr |
Periodic solutions of arbitrary length in a simple integer iteration |
title_full_unstemmed |
Periodic solutions of arbitrary length in a simple integer iteration |
title_sort |
periodic solutions of arbitrary length in a simple integer iteration |
publisher |
SpringerOpen |
series |
Advances in Difference Equations |
issn |
1687-1839 1687-1847 |
publishDate |
2006-01-01 |
description |
<p/> <p>We prove that all solutions to the nonlinear second-order difference equation in integers <it>y</it><sub><it>n</it>+1</sub> = ⌈<it>ay</it><sub><it>n</it></sub>⌉-<it>y</it><sub><it>n</it>-1</sub>, {<it>a</it> ∈ ℝ:|<it>a</it>|<2, <it>a</it>≠0,±1}, <it>y</it><sub>0</sub>, <it>y</it><sub>1</sub> ∈ ℤ, are periodic. The first-order system representation of this equation is shown to have self-similar and chaotic solutions in the integer plane.</p> |
url |
http://www.advancesindifferenceequations.com/content/2006/035847 |
work_keys_str_mv |
AT clarkdean periodicsolutionsofarbitrarylengthinasimpleintegeriteration |
_version_ |
1725387212107808768 |